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The performance of recent computing systems has drastically improved due to the increase in

the number of cores. However, this approach is reaching the limitation due to the power constraints

of facilities. Instead, this paper focuses on a vector processing with long vector length that has a

potential to realize high performance and high power efficiency. This paper discusses the potential

through the optimization of two benchmarks, the Himeno and HPCG benchmarks, for the latest

vector computing system SX-Aurora TSUBASA. The architecture of SX-Aurora TSUBASA owes

the high efficiency to making good of its long vector length. Considering these characteristics,

various levels of optimizations required for a large-scale vector computing system are examined

such as vectorization, loop unrolling, use of cache, domain decomposition, process mapping, and

problem size tuning. The evaluation and analysis suggest that the optimizations improve the sus-

tained performance, power efficiency, and scalability of both benchmarks. Therefore, it is clarified

that the SX-Aurora TSUBASA architecture can achieve higher power efficiency due to its high

sustained memory bandwidth paired with the long vector computing.

Keywords: SX-Aurora TSUBASA, optimization, vector computing, power efficiency, Himeno

benchmark, HPCG.

Introduction

The performance of recent high-performance computing (HPC) systems has been remarkably

improved. One of the main factors is the increase in the number of nodes. A large number of nodes

are clustered into an HPC system. For example, Supercomputer Fugaku, the top 1 system in the

TOP500 ranking as of November 2020, is equipped with 158,976 computing nodes and 7,630,848

cores [5]. The large number of nodes brings the improvement of the peak performance. The other

factor is the improvement of a core in a processor. The improvement of a core performance is

mainly due to the improvement of vector processing. Vector processing has been adopted by

various recent processors in shape of SIMD units, AVX-512 instruction architecture (ISA) for

Intel Xeon, AVX-2 ISA for AMD EPYC. GPUs from NVIDIA and AMD support vectorization

in the SIMT manner, while Fujitsu A64FX implements the ARM SVE as SIMD units with a

vector ISA. The NEC SX dedicated vector processors implement a long vector ISA combining

SIMD with pipelining.

The performance growth comes with a considerable increase in the power consumption of

HPC systems. Due to the limitation of the power supply capacity of each system, the conventional

approach to improve the performance by simply increasing the number of nodes is reaching the

limit. For the design of future HPC systems, a paradigm shift to another new approach is

essential to maximize performance within limited power constraints.
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This paper focuses on a computing system that uses a long vector ISA, which is one of the

most promising technologies for high power efficiency. To exploit the potential of the computing

system, this paper takes an approach to the enhancement of the sustained performance by

the optimizations for not only a single node but also multiple nodes on a vector computing

system. So far, there have been many efforts for the single node optimizations for a long vector

ISA to accelerate HPC applications [10, 13, 19, 20]. Especially, focusing on a high data supply

capability to cores in a vector processor, many memory-intensive HPC applications such as

computational fluid dynamics simulation [22] have been accelerated. This paper examines NEC’s

latest vector system named SX-Aurora TSUBASA that adopts commodity interconnects such

as InfiniBand for inter-node communication [24, 30]. Since multiple node optimizations as well

as the single-node optimizations are important, this paper optimizes, two benchmark programs,

the Himeno [1] and HPCG [2, 9, 17] benchmarks by applying not only the single optimizations

such as vector optimizations, loop unrolling, and efficient use of the cache, but also the multiple

node optimizations such as appropriate process mapping, tuning of domain decomposition. By

performance evaluation and analysis in terms of sustained performance, scalability, and power

consumption, the power efficiency of a large-scale SX-Aurora TSUBASA is investigated.

The contributions of this paper are the following.

1. The potential of a large-scale vector computing system SX-Aurora TSUBASA is investi-

gated. By applying optimizations to the Himeno and HPCG benchmarks, the effectiveness

of the optimizations is discussed using evaluations on two generations of SX-Aurora TSUB-

ASA.

2. The power efficiency of the vector computing system SX-Aurora TSUBASA is quantitatively

discussed by detailed power analysis.

The rest of this paper is organized as follows. Section 1 explains a large-scale vector com-

puting system of SX-Aurora TSUBASA. Section 2 describes optimizations of the Himeno and

HPCG benchmarks for SX-Aurora TSUBASA. Section 3 discusses the effectiveness of the op-

timization and investigates the power efficiency of SX-Aurora TSUBASA through evaluation.

Section 4 introduces related work. Section 4 describes the conclusions of this paper.

1. Overview of Vector Computing Systems

1.1. SX-Aurora TSUBASA Vector Computing System

NEC SX is a series of vector supercomputer systems that has been continuously developed

since 1983. SX-Aurora TSUBASA is the latest vector computing system based on not only

the long term experience and accumulated knowledge but also new strategies that improve the

flexibility and usability.

Figure 1 shows two generations of SX-Aurora TSUBASA. Figure 1a sketches the first gen-

eration of SX-Aurora TSUBASA called an A300-8 model. One Vector Host (VH) node consists

of one VH and eight Vector Engines (VEs). Eight of the first generation VEs are connected to

one VH through two 16-lane PCI Express (PCIe) generation 3.0 switches. The eight VEs are

divided into two VE groups. Four VEs in each VE group and one InfiniBand EDR HCA are

connected to each PCIe switch.

Figure 1b depicts the second generation of SX-Aurora TSUBASA called a B401-8 model.

Eight of the second generation of VEs are used in the B401-8 model. The eight VEs are divided
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(a) An A300-8 model (b) A B401-8 model

Figure 1. Two generations of SX-Aurora TSUBASA

into four VE groups. Two VEs in a VE group are connected to a PCIe generation 3.0 switch.

The two InfiniBand HDR HCAs are connected to a CPU through 16-lane PCIe generation 4.0.

There are four paths to communicate among processes on SX-Aurora TSUBASA: com-

munication within a VE node, communication within a VE group, communication among VE

groups, and communication among VHs. Since each path has different bandwidth and latency, it

is necessary to optimize parallel computing considering the difference of communication paths.

A VH is a common x86 Linux node equipped with an x86 processor such as Intel Xeon and

AMD EPYC. A VE is a dedicated vector processor attached to a VH through PCI Express.

An application is basically executed on a VE as a primary processor responsible for main cal-

culations. A VH mainly manages VEs and performs OS-related tasks such as system calls from

a VE. The OS-related tasks are transparently offloaded to a VH from a VE. This transparent

offload enables a programmer to use the vector processor without any special effort such as the

specifications of computational kernels and OS-related tasks. Furthermore, this execution model

of SX-Aurora TSUBASA can reduce frequent data transfers between a VE and a VH. Such data

transfers become one of the major bottleneck factors on an ordinary accelerator.

Moreover, SX-Aurora TSUBASA supports two explicit offload mechanisms: VH call and

VEO (VE offload). VH call can offload scalar-friendly computations such as serial computation

and system calls to a VH from a VE by explicitly specifying a part of an application to be

offloaded. On the other hand, VEO is used for programs executed on a VH as a primary processor.

By VEO, a part of an application is offloaded to a VE, and the VE acts as a secondary processor,

which is close to the execution model of an ordinary accelerator. Using VEO, vector-friendly

computations such as main computations are explicitly offloaded to a VE from a VH. These

offloading mechanisms allow the SX-Aurora TSUBASA to support various execution models.

This flexibility contributes to improvements of usability and effective usage of the computational

resources by considering characteristics of applications and processors.

1.2. Vector Engine

A VE is a vector processor that mainly contributes to the system performance based on its

vector computing capability. Figure 2 shows an architecture of a VE. The architecture of two

generations of VE is the same. The VE is equipped with eight vector cores. As the core perfor-

mance of VE Type 10B called VE 10B is 537.6 Gflop/s for single-precision (SP) floating-point

calculations, the socket performance reaches 4.30 Tflop/s. In the case of the second generation

of VE Type 20B called VE 20B, the core performance is 614.4 Gflop/s (SP), resulting in the

socket performance of 4.92 Tflop/s. The vector length of each vector core is 256 double-precision
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Figure 2. Architecture of a VE

floating-point elements. It is much longer than that of recent x86 processors which have the

SIMD length of 8 double-precision words in 512-bit SIMD units. The eight vector cores share a

total 16 MB last level cache (LLC). Each core and the LLC are connected by a two-dimensional

mesh network. Furthermore, six High Bandwidth Memory (HBM) modules work together as

the main memory [18]. VE 10B and VE 20B use HBM2 [7] and HBM2E [26], respectively. As a

result, their memory bandwidths reach 1.22 TB/s and 1.53 TB/s, which are much higher than

those achieved with conventional DDR memory modules.

An optional configuration mode of the VE is the partitioning mode. In partitioning mode,

vector cores, LLC, and main memory are virtually partitioned into two same capability segments.

A VE can be treated as two independent partitioning nodes. Since these nodes are isolated from

each other, conflicts of the communication between LLC and vector cores can be reduced. Thus,

the partitioning mode is useful for an application whose bottleneck is the LLC bandwidth. On

the other hand, one vector core can use only the half of memory bandwidth and capacity of

the VE processor. Because of this trade-off, the partitioning mode should be used considering

characteristics of target applications.

1.3. Multiple Levels of Bandwidths of SX-Aurora TSUBASA

In order to examine the various memory levels bandwidths of SX-Aurora TSUBASA, pre-

liminary evaluations are conducted. Figure 3a shows the peer-to-peer network bandwidths of

the four communication paths using the osu bw kernel of the OSU Micro-Benchmarks [3]. The

vertical axis shows the bandwidth when the message size is 512 KB. The horizontal axis shows

the communication paths on the B401-8 systems. This figure shows that the network bandwidth

is fast in the order of communication within a VE, within a VE group, with different VE groups,

and between a VH node. Therefore, to efficiently exploit the potential of a system, it is nec-

essary to take care of the differences in the communication bandwidths. Since the bandwidths

are different among various paths, the communication that requires high bandwidth should use

high bandwidth paths, e.g., by localizing communication as much as possible.

Figure 3b shows the memory bandwidth using the triad kernel of the STREAM bench-

mark [4]. The vertical axis shows the stream memory bandwidth. The horizontal axis shows

the tested processor types. VE 10B, VE 20B, two sockets of Intel Xeon Gold 6126, called Xeon

6126, and two sockets of AMD EPYC 7702 are used as x86 processors. Nvidia TESLA V100 and

A100 are used as GPUs. This figure shows that VE 20B and A100 achieve the highest memory

bandwidths. Although the memory bandwidths of VE 10B and V100 are lower than those of VE

20B and A100, they are higher than those of two sockets of Xeon 6126 and two sockets of EPYC
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(b) STREAM memory benchmark

Figure 3. Bandwidth of SX-Aurora TSUBASA

7702. The main reason for the differences in the bandwidth comes from the memory subsystems

that each processor adopts. VE 20B and A100 are HBM2E memory modules, VE 10B and V100

are the HBM2 memory modules, and Xeon 6126 and EPYC 770 are the DDR4 memory DIMMs.

These differences affect the stream memory bandwidths. To take a close look at the figure, the

stream memory bandwidth of A100 is about 8.0 % higher than that of VE 20B. The efficiency

to the peak memory bandwidth of A100 is higher than that of VE 20B. The efficiencies of A100

and VE 20B are 88.2 % and 82.7 %, respectively. The operational frequency of HBM2E and

the efficiencies lead to the differences in the memory bandwidths between VE20B and A100.

As a result of the preliminary evaluation, it is essential for the optimization of applications to

fully exploit the various bandwidths considering the characteristics of a single node and multiple

nodes.

2. Optimization Techniques for a Vector Computing System

To exploit the potential of a vector computing system, optimizations for a single node and

multiple nodes are essential. For target computations, this paper chooses important kernels

frequently used in memory-bound HPC applications: a stencil computation and a conjugate

gradient (CG) computation. There are two famous benchmark programs including these types

of the kernels, the Himeno and HPCG benchmarks. In this section, by briefly investigating the

characteristics of the benchmarks, optimizations such as vectorization, exploitation of mem-

ory and LLC bandwidths, domain decomposition, and process mapping are applied to these

benchmark programs.

2.1. Optimizations for Stencil Computations

Stencil computations are one of the important kernels in the field of HPC and data sciences.

The Himeno benchmark is one of the benchmark programs that measures the performance of the

stencil computations. The Himeno benchmark solves the Poisson equation by the Jacobi method

in the incompressible fluid analysis [1]. The main kernel named Jacobi requires high memory

bandwidth because it performs stencil calculations that continuously update grid points using the

values of adjacent grid points. In the Jacobi kernel, 19-point stencil calculations are performed

for an array p of the pressure term. By updating the array p in a triple loop in the i, j, and

k directions, 19 references of array p occur in one iteration.

First, to understand the characteristics of the Himeno benchmark, its code is briefly analyzed

using four Bytes/Flop (B/F) ratios: required B/F, actual B/F, memory B/F, and LLC B/F [11,
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24]. The required B/F ratio is defined as the ratio of bytes of the number of load and store

instructions to the number of floating-point operation instructions. The required B/F ratio of

the Himeno benchmark is 3.33. The actual B/F ratio is calculated from the number of actual

memory accesses that take into account the actual behavior of LLC divided by the number of

actual floating-point operation instructions. The actual B/F ratio of the Himeno benchmark is

2.24 in VE 10B and VE 20B. The memory and LLC B/F ratios are defined as the ratios of the

peak memory and LLC bandwidths to the peak computing performance. The memory B/F ratios

of VE 10B and 20B are 0.28 and 0.31, respectively. The LLC B/F ratios of VE 10B and 20B are

0.62 and 0.61, respectively. By comparing with the four B/F ratios, the Himeno benchmark is

judged as a memory bandwidth-bound application even on vector computing systems equipped

with high memory bandwidth.

To exploit the bandwidth of SX-Aurora TSUBASA, the optimizations for improving utiliza-

tion of the LLC, loop unrolling, domain decomposition, and process mapping are applied [27].

The first optimization is the efficient use of the LLC. Since each element in an array p is used

19 times in the Jacobi kernel, 18 times of memory accesses can be reduced if the element is

stored in the LLC. For the 19-point stencil calculation, three planes need to be stored in LLC

to reuse an element 18 times if the size of three planes can fit the LLC. Therefore, the priority

of the cache retention for array p sets to be high by using a dedicated compiler directive.

The next optimization is loop unrolling to reduce the loop overhead. As the Jacobi kernel

is the triple nested loop and the number of loop iterations is large, the cost of controlling the

loop such as loop condition tests and increments of loop indices cannot be ignored, especially on

vector computing systems. By applying loop unrolling, the overhead is reduced. As the innermost

loop is used for the vectorization and the outermost loop is used for parallelization, the second

loop is unrolled. As VE has more vector registers than a general-purpose processor, the number

of unrolls can be large, which is more effective in general. This paper selects the best parameter

of the number of unrolls by the brute-force search in the range of 20 to 26.

The third optimization is the tuning of the domain decomposition. For the MPI version of

the Himeno benchmark, it is necessary to decompose the three-dimensional domain for parallel

processing. To keep a sufficiently large vector length for the computation, the innermost loop

should be carefully selected. Thus, the length in the k direction should be at least 256. Moreover,

the decomposed domain in the j direction should be smaller than that in the i direction as the

memory accesses to the i direction are sequential. The appropriate domain decomposition is

searched by brute-force as the patterns of the domain decomposition are not so large.

The last optimization is process mapping. A halo communication between two processes

that calculate adjacent domains is one of the most bandwidth-bound communication parts in

the Himeno benchmark. As there is a bandwidth difference of each communication path shown in

Fig. 3a, adjacent processes are carefully assigned in the same VE and the same VE group rather

than the VH-VH communication and the VH groups communication. Furthermore, considering

the balance of the communication load in each communication path, the process assignment is

equally distributed.

2.2. Optimizations for the Conjugate Gradient Method

The CG method is one of algorithms to solve linear equations. The CG method is generally

used for large sparse systems that are difficult to handle by direct numerical methods. The

HPCG benchmark [2, 9, 17] is one of the benchmark programs that measures the performance
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of the CG computation. The HPCG solves a linear equation Ax = b with a symmetric sparse

matrix discretized by the finite element method using a multi-grid preconditioned conjugate

gradient (CG) method with a symmetric Gauss-Seidel smoother. According to the CG method,

the linear equation Ax = b results in finding x that minimizes f(x) = 1
2x

TAx− bTx + c. The

CG method solves simultaneous linear equations by the iterative method. The method is often

used in large-scale sparse matrix coefficients that would require a huge number of calculations

and memory in direct methods like Gauss elimination. The required B/F ratio of the reference

version of the HPCG benchmark is 8.31, making it a very realistic benchmark for memory-bound

applications and an ideal candidate for exploiting the large memory bandwidth of the VE.

By using the B/F ratios, the characteristics of the HPCG benchmark is briefly analyzed.

The required and actual B/F ratios of the HPCG benchmark are 7.62 and 5.80, respectively.

The memory B/F ratios of VE 10B and 20B are 0.28 and 0.31, respectively. The LLC B/F ratios

of VE 10B and 20B are 0.62 and 0.61, respectively. By comparing with the four B/F ratios, it

is clarified that the HPCG benchmark is an LLC bandwidth-bound program.

This paper uses the code optimized for SX-Aurora TSUBASA [16]. The code is based on a

vectorized version of the reference algorithm that has achieved 11.2 % efficiency for the SX-ACE

processors [12, 14, 21] by the following important optimizations: ELLPACK data format for the

sparse matrix, hyperplanes or level scheduling ordering for vectorization, and cache retention

control for variables in the SX-ACE advanced data buffer (ADB) for data reuse. Instead of the

cache retention control for ADB on SX-ACE, the priority of the cache retention for the LLC on

VE is controlled by the dedicated compiler directive.

Besides vectorization and optimal data access, the highest impact on the performance is

reformulating the Gauss-Seidel smoother implementation to significantly reduce the number of

operations. When storing the matrix A in three parts, strictly lower and upper matrices L and

U as well as the diagonal D, a symmetric Gauss-Seidel step can be expressed as follows.

(L + D)x(k+1/2) = b− Ux(k) (forward substitution) (1)

and

(U + D)x(k+1) = b− Lx(k+1/2) (backward substitution) (2)

with x(k) being the kth iteration of x. After computing the temporary vector r = Ux(k) through

a sparse matrix-vector multiplication (SpMV), the value of x(k+1/2) is computed through a

triangular solve (TRSV) operation by fulfilling the following equation.

(L + D)x(k+1/2) = b− r. (3)

Thus, the right-hand side of (2) can be computed as follows.

b− Lx(k+1/2) = r + Dx(k+1/2), (4)

which leads to compute x(k+1) from Eq. 2 as the result of a backward triangular solve. A matrix

forward and backward substitutions are replaced by the forward and backward substitutions

of only the L + D and U + D matrices while saving almost half of the loads and operations

with the expense of one fast SpMV, fast vectorizable element-wise product Dx, and vector

additions/subtractions. Additionally, operations in the first, fine-grained smoother step of the

V-shaped multi-grid are saved by using the zero initial guess x(0) = 0 that leads to r = 0. This
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algorithm is also applied by other architectures such as Intel optimized HPCG provided with

the MKL library and GPU HPCG implementations like rocHPCG [25, 28, 29].

In the MPI parallelized version, the matrix can be decomposed into a purely local part and

a halo matrix containing domain boundary elements. This separation allows for some extent of

overlap between computation and communication that improves scalability.

Furthermore, the matrix size should be appropriately specified. To perform efficient vector

computing by keeping an enough long vector length, the y-axis and z-axis sizes need to be long.

As the matrix size affects the convergence of the calculation results, the matrix size should be

carefully selected considering the residual. This paper searches for the optimum matrix size.

To reduce the search space, the matrix size suitable for a single node is searched. For a single

node, (nx, ny, nz) = (56, 216, 376) achieves the highest performance. Then, based on the suitable

matrix size for a single node, the size for multiple nodes is searched. By fixing the value of nz

to 376 in order to keep the vector length, nx and ny are searched.

This paper also uses the partitioning mode to further exploit the potential of LLC. As the

HPCG benchmark is an LLC bandwidth-bound program, the partitioning mode that reduces

the contention to LLC is more suitable than the normal mode.

3. Evaluation

3.1. Evaluation Environments

Table 1. Computing systems used for the evaluations

Systems A300-8 B401-8 Xeon EPYC V100 A100

Host 2×Xeon 6126 EPYC 7402P 2×Xeon 6126 2×EPYC 7702 2×Xeon 6126

Accelerator VE 10B VE 20B - - V100 A100

# of nodes 8 VE nodes 576 VE nodes 1 node 68 nodes 1 node 1 node

Compiler NEC 3.2.1 NEC 3.2.0 Intel 19.1.3.304 Intel 19.1.2.254 PGI 21.2-0

For the evaluation, six various computing systems, SX-Aurora TSUBASA A300-8, SX-

Aurora TSUBASA B401-8, Xeon, EPYC, V100, and A100, are used as shown in Tab. 1. The

specifications of the processors used in the systems, VE 10B, VE 20B, two sockets of Xeon 6126,

two sockets of EPYC 7702, V100, and A100, are shown in Tab. 2.

For the compiler, the proprietary NEC compiler for VEs is used. The compile option “-O4

-msched-block” is used, which allows the compiler to automatically optimize and schedule the

instruction in a basic block. For the general-purpose processors such as Xeon and EPYC, the

Intel compiler collection is used. For V100 and A100, the PGI compiler is used.

For the Himeno benchmark, the MPI versions are used. For the evaluation on multiple nodes,

the weak scale version is developed. For Xeon 6126 and EPYC 7702, only the optimization for

the domain decomposition is applied to the reference codes. For V100 and A100, the parameter

tuning of system parameters is optimized [23].

For the HPCG benchmark on Xeon 6126 and EPYC 7702, only the optimization for the

size tuning is applied to the reference codes. For A100, the HPCG code in the NVIDIA HPC-

Benchmark 21.2 is used.

To measure the power consumption of processors, Vector Engine MMM-Command, Intel

SoC Watch, and NVIDIA SMI are used. For the power consumption of the whole system,
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Table 2. Specification of processors used for evaluation

VE 10B VE 20B Xeon 6126 EPYC 7702 V100 A100

Number of cores 8 8 12 64 5120 6912

Peak SP (Tflop/s) 4.30 4.92 1.766 4.096 14 19.5

Peak DP (Tflop/s) 2.15 2.46 0.883 2.048 7 9.7

Memory 6×HBM2 6×HBM2E 6×DDR4 8×DDR4 4×HBM2 6×HBM2E

Mem. BW (GB/s) 1228 1536 128 204.8 900 1555

Mem. Cap. (GB) 48 48 192 256 32 40

LLC BW (TB/s) 2.66 3.00 - - 2.70 6.88

LLC Cap. (MB) 16 16 19.25 256 6 40

Supermicro IPMICFG is used. The execution times of the Himeno and HPCG benchmark are

set to 10 minutes and two minutes, respectively.

3.2. Evaluation Results

3.2.1. Evaluation of the Himeno benchmark
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Figure 4. Performance of the Himeno benchmark on a single node

First, to examine the effects of the optimizations on a single VE node, Fig. 4a shows the

performance on VE 10B and VE 20B. The vertical axis represents the Himeno performance.

The horizontal axis represents each optimization. “+LLC utilization”, “+unrolling”, and “+de-

composition” indicate that each optimization is applied in the order of LLC utilization, loop

unrolling, and tuning of decomposition parameters from “Original”. In the original code, the

decomposition parameter is set to (i, j, k) = (2, 2, 2).

Figure 4a shows that each optimization improves the Himeno performance. In particular, the

loop unrolling has a great impact on the performance improvement. The loop unrolling achieves

about 23.9 % and 24.9 % performance improvements on VE 10B and 20B, respectively. This is

because the loop unrolling reduces loop overheads that is one of the large overheads. Moreover,

the tuning of the decomposition parameters improves about 9.0 % and 8.7 % on VE 10B and

VE 20B, respectively. The sequential memory access along the i direction by the tuning of the

domain decomposition contributes to the performance improvement. As a result, the single-

node optimizations achieve about 37.3 % and 38.3 % sustained performance improvements on

VE 10B and VE 20B compared to the original code, respectively. Figure 4a also shows that the

performances of VE 20B are higher than those of VE 10B. This performance improvement is
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Figure 5. Weak scale performance of the Himeno benchmark on the B401-8 system

mainly brought by the improvement of the computational capability and the memory bandwidth

of VE 20B.

To compare the Himeno performance of VE 10B and VE 20B with other processors, Fig. 4b

shows the Himeno performance on various processors. This figure shows that A100 achieves the

highest performance. A100 achieves about 43.3 % higher performance than VE 20B even though

the peak memory bandwidth of VE 20B and A100 are almost the same. One of the reasons is that

the reduction operation is heavy for vector computing. Since the vector length of a VE is long,

the cost for the vector reduction becomes large. The other reason is that the high bandwidth

of VE cannot be exploited due to the single-precision floating-point data. A packed memory

load operation that treats two single-precision floating-point elements in a one load operation

is not efficiently performed. Thus, A100 achieves higher performance compared with VE 20B.

Compared with Xeon, EPYC, and V100, VE 10B and VE 20B achieve high performance. Since

the memory and LLC bandwidths of VEs are the highest among them, VEs can achieve the

highest performance.

In the aspect of the efficiency, the ratio of the sustained performance to the peak perfor-

mance, VE 10B, VE 20B, Xeon 6126, EPYC 7702, V100, and A100 are 7.7 %, 7.7 %, 2.2 %,

1.7 %, 2.2 %, and 2.8 %, respectively. VE 10B and VE 20B achieve the highest efficiencies. Since

VEs are carefully designed considering a balance between the sustained memory performance

and sustained computational performance for memory-intensive applications, VEs can achieve

the highest performance.

Next, the performance and weak scalability on a large-scale SX-Aurora TSUBASA are

examined. Figure 5a shows the Himeno performance of the weak scaling on the B401-8 system.

The problem size assigned to each process is fixed to the L size of 256×256×512. This size is the

maximum size for the memory capacity when eight processes are assigned to a VE. The vertical

axis shows the sustained performance in the log scale. The maximum number of processes is

4608 that is equivalent to 576 VE nodes or 72 VH nodes. This figure shows that the optimized

version achieves higher performance than that of the original version. About 43 % on average

and about 53 % at maximum performance improvements are obtained by the optimizations.

These results indicate that the proposed optimizations are essential to exploit performance on

the large-scale vector computing system.

Figure 5a also shows that the increase in the number of processes improves the weak-scale

performance. To examine the weak scalability in detail, Fig. 5b shows the weak scalability of

the Himeno benchmark on the B401-8 system. The vertical axis shows the speedup ratio to

a single VE node. The horizontal axis shows the number of processes. This figure shows that
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Figure 6. Strong scale performance of the Himeno benchmark on the B401-8 system
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Figure 7. Power consumption of the Himeno benchmark

good scalabilities are obtained in the original and optimized versions. Although the collective

communication for residual in the Himeno benchmark leads to the decrease in scalabilities, the

parallel efficiencies of the original and optimized versions reach 85.4 % and 83.7 % even when

the number of processes is 4608.

The strong scalability on a large-scale SX-Aurora TSUBASA is examined. Figure 6 shows

the Himeno performance of the strong scaling on the B401-8 system. The problem size is the XL

size of 512×512×1024 and the 3L size of 1024×1024×2048. The vertical axis shows the sustained

performance. This figure shows that the optimized version achieves higher performance than the

original version. This is because the optimizations contribute to the performance improvements.

In particular, when the number of processes is large, multi-node optimizations such as domain

decomposition and process mapping impact the sustained performance.

Moreover, the performance of the 3L size is much higher than that of the XL size, especially

when the number of processes is large. This is because the parallelisms for vectorization and

parallelization in the XL size are not enough for the large-scale execution. As the number of

processes increases, the performance differences between the XL size and the 3L size become

large. Even the 3L size is not enough when the number of processes is large. To exploit the full

potential of the system, the larger size needs to be selected according to the system size.

To clarify the power efficiency, the power consumption of SX-Aurora TSUBASA is exam-

ined. Since one of the limiting factors in the scale of computing systems is power consumption

of each system, power efficiency and/or sustained performance per power is very important to-
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day and future. Figure 7 shows the power consumption when the weak scale performance of

the Himeno benchmark is measured. Figure 7a shows the breakdown of the average power con-

sumption of VEs, Xeon, GPUs, and “Others.” “Others” includes the power consumption of the

cooling fans, the memory modules of a VH, the power units, and the other server components.

“Others” is calculated by subtracting the power consumption of the processor from the total

power consumption. The horizontal axis represents the various processors of the original and

optimized versions.

First, taking look at single VE cases, the power consumptions of the optimized version

increases by comparing the original and optimized versions on VE 10B and VE 20B. This is

because the cores and memory in VEs are fully operated by the optimizations. Moreover, VE

20B consumes about 13.4 % more power than VE 10B. This is due to the difference in the

operating frequency of VE 20B and VE 10B. As the operating frequency of VE 20B is 1.6 GHz

while it is 1.4 GHz in VE 10B, VE 20B is running at about 14.2 % faster frequency than VE

10B. As the power consumption is in proportion to the frequency, VE 20B consumes more power

than VE 10B.

Compared with A100, the power consumptions of VE 10B and VE20B are low. However,

the total power consumption of the A100 system is lower than those of the VE 10B and VE 20B

systems. This is because the fine-grain fan control can be performed in the A100 system. Thus,

the power consumption by the cooling fan in the A100 system becomes low.

The power consumption of “Others” in cases of a single VE occupies about 60 % of the total

power consumption. One of the power consuming components is the cooling fans, especially

when the fans rotate at very high speed when the temperature of VEs increases. The power

consumption of “Others” on VE 20B is higher than that on VE 10B. This is because the

temperature of VE 20B easily increases compared with VE 10B due to the high frequency of

VE 20B.

To investigate the relationship between the power consumption and the cooling fans, Fig. 7b

shows the total power consumption, the number of rotations of fans, and the temperature on VE

10B and VE 20B. The vertical axis in the left shows the power consumption and the temperature

of VEs. The vertical axis in the right shows rotations per second of the cooling fan. The horizontal

axis shows the elapsed time. This figure suggests that the cooling fan runs at the high speed

from when the temperature of VEs rises to 70 degrees until when it drops to 60 degrees. This

figure also shows that the fan of VE 10B often runs high rotations compared to VE20. This

result implies that VE10 is easier to be cold enough to stop the fans than VE20 because the

operating frequency of VE 10B is lower than that of VE 20B.

Second, in the cases of multiple VEs, the power consumption of VEs almost proportionally

increases as the number of VEs increases in both cases of VE 10B and VE 20B. Since most

computation is performed on VEs, the power consumption increases according to the number

of VEs while those of Xeon and others slightly increase.

Figure 8 shows the power efficiency that divides the sustained performance by the average

power. “Processor” indicates the power efficiency of the processor, i.e., the performance divided

by the average power of only the processor. “System” indicates the power efficiency of the

whole system. First, taking look at single node cases, this figure shows that the optimizations

contribute to the power efficiencies as well as the sustained performance. The efficiencies of VE

10B and VE 20B are improved by about 18.0 % and 18.7 %, respectively. Since the increase in the

power consumption can be amortized by the increase in the sustained performance, the power
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Figure 9. Performance of the HPCG benchmark on a single node

efficiencies can be improved. Moreover, the power efficiencies of VE 10B, VE 20B, and A100 are

similar. Even the previous generation of VE 10B achieves high power efficiency. Although the

performances of VE 10B and VE 20B are lower than that of A100, the power consumption of

VE 10 and VE 20B are lower than that of A100. As a result, VE 10B and VE 20B achieve a

similar power efficiency to A100.

In the cases of multiple VEs, the power efficiencies of “processors” in VE 10B and VE 20B

gradually decrease as the number of VEs increases. This is because the sustained performance

does not ideally scale according to the number of VEs, although the power consumption increases

according to the number of VEs. On the other hand, the power efficiencies of “system” increase

as the number of VEs increases. As the total power consumption does not proportionally increase

to the number of VEs, the increase in the total power consumption can be amortized by the

increase in the sustained performance.

The process technologies used in VE 10B and VE 20B are TSMC 16 nm while the process

technology of A100 is TSMC 7 nm. Even though VEs use the two-generation old process tech-

nology, the power efficiencies of VEs are similar to A100 that uses the latest process technology.

If VEs use the same process technology, the power efficiencies should be much higher than that

of GPUs. This result clarified that the vector architecture is a power efficient architecture that

is one of important features as the power constraints become stricter in the future.
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3.2.2. Evaluation of the HPCG benchmark

To examine the effects of the optimizations, Fig. 9a shows the performance of the optimiza-

tions on VE 10B and VE 20B. The vertical axis represents the sustained performance of the

HPCG benchmark. The horizontal axis represents each optimization. “Original” indicates the

reference version of HPCG. “+ optimized” indicates the version for the vector optimizations.

“+ size tuning” indicates tuning of the problem size to (56×216×376) from the initial problem

size of (104×104×104). “+ partitioning” uses the partitioning mode. The optimizations are ap-

plied in the order of the vector optimizations, the tuning of the matrix size, and the partitioning

mode from left to right in the figure.

This figure shows that each optimization improves the HPCG performance. The optimized

version that applies the ELL data format, hyperplanes or level scheduling ordering for vector-

ization, and cache retention for the LLC, and reduction in the instructions significantly improve

the performance. The main reason is due to the increase in the vectorization ratio and the av-

erage vector length. By the optimizations, the vectorization ratio is improved to 99.2 % from

73.7 % and the average vector length is drastically improved to 236.2 from 27.9. Therefore, the

performance improves by 86.8 times compared with the original version.

Figure 9a also shows that the tuning of the matrix size further improves the performance

by about 9 %. As the matrix size affects the size of hyperplane slices, the average vector length

is improved to 241.2.

Furthermore, the partitioning mode further improves the performance. By the partitioning

mode, the execution time of the load instruction becomes about 10 % shorter than that of the

normal mode. The short execution time of the load instruction by the reduction in the network

conflicts between LLC and the memory further results in about 19 % performance improvement.

Moreover, Fig. 9a shows that the performances of VE 20B are about 15 to 17 % higher than

those of VE 10B. The main reason for the improvement is that the LLC bandwidth of VE 20B is

higher than that of VE 10B. Since the LLC bandwidth of VE 20B is improved by about 12.8 %,

it contributes to the higher performance.

Compared with the other processors, Fig. 9b shows the performance on VE 10B, VE 20B,

two sockets of Xeon 6126, two sockets of EPYC 7702, and A100. The horizontal axis represents

processors. This figure shows that A100 achieves the highest performance. The performance of

A100 is 1.56 times faster than that of VE 20B. Compared with Xeon and EPYC, VE 10B and

VE 20B achieve much high performance. One of the reasons is that the LLC bandwidth of A100

is higher than that of VE 20B. The theoretical LLC bandwidth of A100 is 6.88 TB/s [8], while

it is 3.00 TB/s on VE 20B. As the LLC bandwidth of A100 is more than 2.29 times higher,

the LLC bandwidth improves the HPCG performance on A100. The other reason is that VE

20B cannot fully exploit its high memory bandwidth due to the memory latency by the indirect

memory accesses. As a result, the difference of the HPCG performance between VE 20B and

A100 becomes larger than that in the case of the stream memory bandwidth.

On the other hand, the efficiencies of VEs are the highest. The efficiencies of VE 10B, VE

20B, Xeon 6126, EPYC 7702, A100 are 5.9 %, 6.1 %, 1.3 %, 1.0 %, and 2.4 %, respectively. Due

to the balanced architecture of SX-Aurora TSUBASA for bandwidth-bound applications, VE

10B and VE 20B achieve higher efficiencies than the other processors.

Figure 10 shows the scalability of the HPCG benchmark on the B401-8 and EPYC systems.

The vertical axis represents the speedup ratio to single process performance. The horizontal

axis represents the number of processes. This figure shows that a good scalability of VE 20B
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Figure 10. Scalability of the HPCG benchmark
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Figure 11. Power consumption of the HPCG benchmark

is obtained. When the number of processes is 256, the parallel efficiency is about 71.6 %. As

the HPCG benchmark is weak scaling, the performance scales fine even when the number of

processes is large.

In the case of EPYC 7702, the scalability is not good compared with VE 20. The memory

bandwidth of EPYC 7702 scales up to 32 processes, and then, the memory bandwidth is satu-

rated when the number of processes is 64 or more, As the HPCG performance on EPYC 7702 is

limited by the memory bandwidth, the scalability of EPYC 7702 also becomes saturated when

the number of processes is 64 or more.

To examine the power consumption, Fig. 11a shows the breakdown of the average power

consumption. This figure shows that the power consumption of a VE 10B and a VE 20B increases

by the optimizations. As the optimized version with the partitioning mode efficiently uses VEs,

the power consumption increases. On the other hand, as the original version cannot exploit the

performance of VEs, the power consumption is low.

Furthermore, the power consumption of A100 is higher than those of VE 10B and VE 20B

although the total power consumption of the A100 system is lower than those of the VE 10B

and VE 20B systems. This is because of the difference of the fan control mechanism between

the A100 system and the VE systems, which is also discussed in the Himeno benchmark. As

the fine-grain fan control can be performed in the A100 system, the power consumption by the

cooling fan becomes low.
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Figure 12. Power efficiency

Figure 11a also shows the power consumption on VE 20B is higher than those on VE 10B.

To investigate the reason, Fig. 11b shows the total power consumption, the number of rotations

of fans, and the temperature on VE 10B and VE 20B. The vertical axis in the left shows the

power consumption and the temperature of VEs. The vertical axis in the right shows rotations

per second of the cooling fan. The horizontal axis shows the elapsed time. This figure shows that

the total power consumption of VE 20B becomes high because the cooling fans of VE 20B rotate

more often than that of VE 10B. This is because VE10 is easier to be cold enough to reduce the

number of rotations of the fan than VE20. Furthermore, the fan in the HPCG benchmark runs

at the high rotation more often than that in the Himeno benchmark. Since the characteristics of

the benchmarks differ from each other, it affects the frequency of the high rotations of the fan.

Figure 12 shows the power efficiency of the HPCG benchmark. The power efficiencies of a

VE 10B and a VE 20B are almost the same even though the performance of VE 10B is lower

than that of VE 20B even in the HPCG benchmark as well as the Himeno benchmark. As the

power consumption of VE 10B is lower than that of VE 20B, the power efficiency of VE 10B

equals to that of VE 20B. Moreover, the power efficiency of A100 is higher than those of VE

10 and VE 20B. Although the power consumption of VE 10 and VE 20B is lower than that of

A100, the sustained performance of A100 is much higher than those of VE 10B and VE 20B. As

a result, A100 achieves higher power efficiency than VE 10B and VE 20B. The reason is that

the process technologies used in VE 10B and VE 20B are two-generation old compared with

A100. If VEs use the same process technology, it is expected that VEs can achieve higher power

efficiency than A100.

In the cases of multiple VEs, the power efficiencies of VE 10B and VE 20B gradually decrease

as the number of VEs increases. This is because the sustained performance does not ideally scale

according to the number of VEs, although the power consumption increases according to the

number of VEs. On the other hand, the power efficiencies of “system” increase as the number of

VEs increases. As the total power consumption does not increase in proportion to the number

of VEs, the increase in the total power consumption can be amortized by the increase in the

sustained performance.

4. Related Work

The performance optimization and evaluation of vector computing systems have been con-

tinuously conducted [11, 12, 15, 24]. Komatsu et al. have evaluated the first generation of SX-

Performance and Power Analysis of a Vector Computing System

90 Supercomputing Frontiers and Innovations



Aurora TSUBASA using benchmarks including the Himeno benchmark. From the evaluation, it

is clarified that the first generation of SX-Aurora TSUBASA has advantages of memory-intensive

benchmark compared with Xeon Skylake and SX-ACE. However, the performance on multiple

nodes is not evaluated. This paper extends the optimization of the Himeno benchmark for mul-

tiple nodes such as domain decomposition and processing mapping considering the bandwidth

and clarifies the performance and scalability on multiple nodes of SX-Aurora TSUBASA.

Furthermore, the performance evaluation on the second generation of SX-Aurora TSUBASA

has been reported [11]. It clarifies that the performance and power efficiencies of HPCG and

HPL of VE 20B are higher than those of Xeon and EPYC. However, the detailed analysis of

performance and power efficiency is not conducted. This paper further optimizes the HPCG

benchmark for the large-scale vector computing systems by the size tuning. Moreover, this

paper deeply evaluates and analyzes the Himeno and HPCG benchmark performances on the

large-scale vector computing systems in terms of the effects of optimizations, scalability, average

power consumption, power efficiency. As a result of the evaluation and deep analysis, it can be

clarified that the power efficiency of a vector architecture is high and promising for the future

HPC systems.

Hartwig et al. have evaluated the memory bandwidth of the A100 and the performance

of sparse and batched computations [6]. This paper evaluates the performance and the power

efficiency of V100 and A100 with the Himeno benchmark. It shows higher performance of A100

than that of V100. By comparing the performance of GPUs and VEs, this paper clarifies the

characteristics of these processors.

Conclusions

The peak performance of recent HPC systems has been remarkably improved by the increase

in the number of nodes. This approach to improve the performance has also brought the increase

in the power consumption of the HPC systems. However, due to the limitation of the power

budget for each facility, the conventional approach of simply increasing the number of nodes to

improve the performance is not realistic in near future. Therefore, a paradigm shift to a new

approach is essential to keep improving the performance within the limited power constraints

for the design of future HPC systems.

This paper focuses on a vector computing system adopting a long vector processing that

has a potential to realize high performance with high power efficiency under the strict power

constraints. To achieve high power efficiency, this paper improves the sustained performance by

the optimizations for vector computing system. As the target programs, this paper selects two

benchmark programs, the Himeno and HPCG benchmarks, and applies vector optimizations for

a vector computing system in aspect of a single node and multiple nodes.

By deep analysis through the performance evaluation, the sustained performance, the scal-

ability, and the power consumption, the power efficiency of a large-scale SX-Aurora TSUBASA

are clarified. For the Himeno benchmark, VE 10B and VE 20B achieve about 37.3 % and 38.3 %

performance improvements by a single node optimizations compared to the original code, re-

spectively. VE 10B and VE 20B achieve about 7.7 % efficiency, which is the highest efficiency

among various processors. For the HPCG benchmark, VE 10B and VE 20B can achieve about

112 and 113 times performance improvements by single node optimizations compared to the

reference code, and about 5.9 % and 6.1 % efficiencies, respectively, which also are the highest

efficiencies among various processors. Furthermore, it is clarified that SX-Aurora TSUBASA
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could achieve the highest power efficiencies among the latest processors such as an Intel pro-

cessor, an EPYC processor, and a GPU even though VEs adopt the previous generation of the

process technology. This fact suggests that the vector computing with a long vector length can

achieve a high power efficient computing and the vector architecture could be most efficient if

it used the latest process technology. Therefore, this paper clarified that the vector computing

is one of the promising ways to survive in the design of the future computing system with the

strict power constraints.

Acknowledgements

The authors would like to thank Christie Alappat from the University of Erlangen-

Nuremberg for the assistance and inspiring discussions on HPCG algorithm tuning. The au-

thors also thank large-scale HPC challenge of Cyberscience Center, Tohoku University for the

large-scale executions of the supercomputing systems. This research was partially supported by

MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D

Program, entitled “R&D of A Quantum-Annealing-Assisted Next Generation HPC Infrastruc-

ture and its Applications,” Grants-in-Aid for Scientific Research (A) #19H01095, Grants-in-Aid

for Scientific Research (C) #20K11838, and Japan-Russia Research Cooperative Program be-

tween JSPS and RFBR, Grant number JPJSBP120214801.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Himeno benchmark. http://i.riken.jp/en/supercom/documents/himenobmt/, accessed:

2021-05-31

2. HPCG benchmark. https://www.hpcg-benchmark.org/, accessed: 2021-05-31

3. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE. http://

mvapich.cse.ohio-state.edu/benchmarks/, accessed: 2021-05-31

4. STREAM: Sustainable Memory Bandwidth in High Performance Computers. https://www.

cs.virginia.edu/stream/, accessed: 2021-05-31

5. TOP500 Supercomputer Sites, http://www.top500.org/

6. Anzt, H., Tsai, Y.M., Abdelfattah, A., et al.: Evaluating the performance of NVIDIAs

A100 ampere GPU for sparse and batched computations. In: 2020 IEEE/ACM Performance

Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS).

pp. 26–38. IEEE (2020). https://doi.org/10.1109/PMBS51919.2020.00009

7. Cho, J.H., Kim, J., Lee, W.Y., et al.: A 1.2V 64Gb 341GB/S HBM2 stacked DRAM

with spiral point-to-point TSV structure and improved bank group data control. In: 2018

IEEE International Solid - State Circuits Conference - (ISSCC). pp. 208–210. IEEE (2018).

https://doi.org/10.1109/ISSCC.2018.8310257

Performance and Power Analysis of a Vector Computing System

92 Supercomputing Frontiers and Innovations

http://i.riken.jp/en/supercom/documents/himenobmt/
https://www.hpcg-benchmark.org/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
http://www.top500.org/
https://doi.org/10.1109/PMBS51919.2020.00009
https://doi.org/10.1109/ISSCC.2018.8310257


8. Choquette, J., Gandhi, W.: NVIDIA A100 GPU: Performance innovation for GPU com-

puting. In: 2020 IEEE Hot Chips 32 Symposium (HCS). pp. 1–43. IEEE (2020). https:

//doi.org/10.1109/HCS49909.2020.9220622

9. Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient benchmark:

A new metric for ranking high-performance computing systems. The International Journal

of High Performance Computing Applications 30(1), 3–10 (2016). https://doi.org/10.

1177/1094342015593158

10. Egawa, R., Komatsu, K., Takizawa, H.: Designing an open database of system-aware

code optimizations. In: 2017 Fifth International Symposium on Computing and Network-

ing (CANDAR). pp. 369–374. IEEE Computer Society (2017). https://doi.org/10.1109/

CANDAR.2017.102

11. Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the potentials of the second gen-

eration SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems (PMBS). pp. 39–49. IEEE (2020).

https://doi.org/10.1109/PMBS51919.2020.00010

12. Egawa, R., Komatsu, K., Isobe, Y., et al.: Performance and power analysis of SX-ACE using

HP-X benchmark programs. In: 2017 IEEE International Conference on Cluster Computing

(CLUSTER). pp. 693–700. IEEE Computer Society (2017). https://doi.org/10.1109/

CLUSTER.2017.65

13. Egawa, R., Komatsu, K., Kobayashi, H.: Designing an HPC refactoring catalog toward the

exa-scale computing era. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Patel, N.

(eds.) Sustained Simulation Performance 2014. pp. 91–98. Springer (2015). https://doi.

org/10.1007/978-3-319-10626-7_8

14. Egawa, R., Komatsu, K., Momose, S., et al.: Potential of a modern vector supercomputer for

practical applications: performance evaluation of SX-ACE. The Journal of Supercomputing

73(9), 3948–3976 (2017). https://doi.org/10.1007/s11227-017-1993-y

15. Egawa, R., Momose, S., Komatsu, K., Isobe, Y., Musa, A., Takizawa, H., Kobayashi, H.:

Early evaluation of the SX-ACE processor. In: The poster at International Conference for

High Performance Computing, Networking, Storage and Analysis (SC14) (2014)

16. Focht, E.: HPCG Performance Efficiency on VE at 5.99%. https://sx-aurora.github.

io/posts/hpcg-tuning/ (2019), accessed: 2021-06-09

17. Heroux, M.A., Dongarra, J., Luszczek, P.: HPCG benchmark technical specification (2013).

https://doi.org/10.2172/1113870

18. Hou, S.Y., Chen, W.C., Hu, C., et al.: Wafer-level integration of an advanced logic-memory

system through the second-generation CoWoS technology. IEEE Transactions on Electron

Devices 64(10), 4071–4077 (2017). https://doi.org/10.1109/TED.2017.2737644

19. Komatsu, K., Egawa, R., Hirasawa, S., et al.: Migration of an atmospheric simulation code

to an OpenACC platform using the Xevolver framework. In: 2015 Third International Sym-

posium on Computing and Networking (CANDAR). pp. 515–520. IEEE Computer Society

(2015). https://doi.org/10.1109/CANDAR.2015.102

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 93

https://doi.org/10.1109/HCS49909.2020.9220622
https://doi.org/10.1109/HCS49909.2020.9220622
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1109/CANDAR.2017.102
https://doi.org/10.1109/CANDAR.2017.102
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1007/978-3-319-10626-7_8
https://doi.org/10.1007/978-3-319-10626-7_8
https://doi.org/10.1007/s11227-017-1993-y
https://sx-aurora.github.io/posts/hpcg-tuning/
https://sx-aurora.github.io/posts/hpcg-tuning/
https://doi.org/10.2172/1113870
https://doi.org/10.1109/TED.2017.2737644
https://doi.org/10.1109/CANDAR.2015.102


20. Komatsu, K., Egawa, R., Hirasawa, S., et al.: Translation of large-scale simulation codes for

an OpenACC platform using the Xevolver framework. International Journal of Networking

and Computing 6(2), 167–180 (2016). https://doi.org/10.15803/ijnc.6.2_167

21. Komatsu, K., Egawa, R., Isobe, Y., et al.: An approach to the highest efficiency of the

HPCG benchmark on the SX-ACE supercomputer. In: Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis (SC15), Poster. pp. 1–2

(2015)

22. Komatsu, K., Egawa, R., Takizawa, H., et al.: Exploring system architectures for next-

generation CFD simulations in the postpeta-scale era. Journal of Fluid Science and Technol-

ogy 9(5), JFST0073–JFST0073 (2014). https://doi.org/10.1299/jfst.2014jfst0073

23. Komatsu, K., Kishitani, T., Sato, M., et al.: An appropriate computing system and its

system parameters selection based on bottleneck prediction of applications. In: 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp.

768–777. IEEE (2019). https://doi.org/10.1109/IPDPSW.2019.00127

24. Komatsu, K., Momose, S., Isobe, Y., et al.: Performance evaluation of a vector super-

computer SX-Aurora TSUBASA. In: Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis. pp. 54:1–54:12. SC ’18, IEEE

Press (2018). https://doi.org/10.1109/SC.2018.00057

25. Liu, Y., Yang, C., Liu, F., et al.: 623 Tflop/s HPCG run on Tianhe-2: Leveraging millions

of hybrid cores. The International Journal of High Performance Computing Applications

30(1), 39–54 (2016). https://doi.org/10.1177/1094342015616266

26. Oh, C.S., Chun, K.C., Byun, Y.Y., et al.: 22.1A 1.1V 16GB 640GB/s HBM2E DRAM with

a Data-Bus Window-Extension Technique and a Synergetic On-Die ECC Scheme. In: 2020

IEEE International Solid- State Circuits Conference - (ISSCC). pp. 330–332. IEEE (2020).

https://doi.org/10.1109/ISSCC19947.2020.9063110

27. Onodera, A., Komatsu, K., Fujimoto, S., et al.: Optimization of the himeno benchmark

for SX-Aurora TSUBASA. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and

Optimizing. Lecture Notes in Computer Science, vol. 12614, pp. 127–143. Springer (2021).

https://doi.org/10.1007/978-3-030-71058-3_8

28. Park, J., Smelyanskiy, M., Vaidyanathan, K., et al.: Optimizations in a high-performance

conjugate gradient benchmark for IA-based multi- and many-core processors. The In-

ternational Journal of High Performance Computing Applications 30(1), 11–27 (2016).

https://doi.org/10.1177/1094342015593157

29. Phillips, E., Fatica, M.: Performance analysis of the high-performance conjugate gradient

benchmark on GPUs. The International Journal of High Performance Computing Applica-

tions 30(1), 28–38 (2016). https://doi.org/10.1177/1094342015599239

30. Yamada, Y., Momose, S.: Vector engine processor of NEC’s brand-new supercomputer

SX-Aurora TSUBASA. In: International symposium on High Performance Chips (Hot

Chips2018) (2018)

Performance and Power Analysis of a Vector Computing System

94 Supercomputing Frontiers and Innovations

https://doi.org/10.15803/ijnc.6.2_167
https://doi.org/10.1299/jfst.2014jfst0073
https://doi.org/10.1109/IPDPSW.2019.00127
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1177/1094342015616266
https://doi.org/10.1109/ISSCC19947.2020.9063110
https://doi.org/10.1007/978-3-030-71058-3_8
https://doi.org/10.1177/1094342015593157
https://doi.org/10.1177/1094342015599239

	K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato, H. Kobayashi

