
The MareNostrum Experimental Exascale Platform (MEEP)

Alexander Fell1, Daniel J. Mazure1, Teresa C. Garcia1, Borja Perez1,
Xavier Teruel1, Pete Wilson1, John D. Davis1

c© The Authors 2021. This paper is published with open access at SuperFri.org

Nascent Open Source Instruction Set Architectures such as OpenPOWER or RISC-V, allow
software/hardware co-designers to fully utilize the underlying hardware, modify it or extend it
based on their needs. In this paper, we introduce the vision of the MareNostrum Experimen-
tal Exascale Platform (MEEP), an Open Source platform enabling software and hardware stack
experimentation targeting the High-Performance Computing (HPC) ecosystem. MEEP is built
with state-of-the-art FPGAs that support PCIe and High Bandwidth Memory (HBM), making it
ideal to emulate chiplet-based HPC accelerators such as ACME, at the chip, package, and/or sys-
tem level. MEEP provides an FPGA Shell containing standardized interfaces (I/O and memory),
enabling an emulated accelerator to communicate with the hardware of the FPGA and ensures
quick integration. The first demonstration of MEEP is mapping a new accelerator, the Accelerated
Compute and Memory Engine (ACME), on to this digital laboratory. This enables exploration of
this novel disaggregated architecture, which separates the computation from the memory opera-
tions, optimizing the accelerator for both dense (compute-bound) and sparse (memory-bandwidth
bound) workloads. Dense workloads focus on the computational capabilities of the engine, while
dedicated processors for memory accesses optimize non-unit stride and/or random memory ac-
cesses required by sparse workloads. MEEP is an open source digital laboratory that can provide
a future environment for full-stack co-design and pre-silicon exploration. MEEP invites software
developers and hardware engineers to build the application, compiler, libraries and the hardware
to solve future challenges in the HPC, AI, ML, and DL domains.

Keywords: high performance computing (HPC), accelerator, software stack, open source hard-
ware.

Introduction
Today, Linux is the omnipresent Operating System (OS) in the Internet-of-Things (IoT)

space running on small embedded systems, in the mobile space in the form of Android and it is
ubiquitous in High-Performance Computing (HPC) and cloud-based systems with various Open
Source Software (OSS) components built on top. OSS provides the foundational building blocks
for the OS, toolchain, runtimes, frameworks, libraries, and all the way up to the application layer
enabling rapid development and extension of any layer in the software stack.

However, when examining hardware, current commercial off the shelf solutions (COTS) are
closed hardware ecosystems that only enable integration at the peripheral level through a defined
interface such as PCIe and proprietary drivers. This stifles innovation by limiting optimizations to
the software stack, preventing true software/hardware co-design. This problem has been intensified
by the end of Dennard scaling and the dramatic slowdown in Moore’s Law, requiring specialized
hardware, in form of accelerators, to meet the system power and performance requirements.
At the same time, the software stack is evolving, becoming more abstract. This enables higher
programmer productivity, but sacrificing hardware efficiency. Thus, application owners will need
to co-design the full stack, all layers of hardware and software, in order to meet their performance
and power (FLOPs/W) targets. This level of tight integration is not possible in a closed or even
partially open ecosystem.

1Barcelona Supercomputing Center (BSC), Barcelona, Spain

DOI: 10.14529/jsfi210105

62 Supercomputing Frontiers and Innovations

There have been Open Source Hardware (OSH) platforms in the past, but Moore’s Law
and many other reasons inhibited their adoption, e.g. continuous general purpose processor per-
formance improvements, time to market, cost, software development, etc. Furthermore, unlike
Linux, previous OSH was entangled in the companies that created them and/or generally poor
quality. Mirroring the same model as Linux, RISC-V has followed a similar development path and
has enjoyed significant industrial and academic adoption. The RISC-V ecosystem is in the nascent
period where it can become the de facto open hardware platform of the future, having the same
opportunity in hardware that Linux created as a foundation for OSS. This enables the co-design
of the RISC-V hardware and the entire software stack, creating a better overall solution than the
closed hardware approach that is done today.

In this paper, we introduce a new digital laboratory for software and hardware development,
called the MareNostrum Experimental Exascale Platform (MEEP). MEEP is a high-level hard-
ware emulation platform that also can be used as a Software Development Vehicle (SDV) and is
described in Section 1. Its name (meep meep) pays homage to the RoadRunner supercomputer,
the first PetaFLOPS system [1]. MEEP leverages OSS and extends various software layers in the
stack to run on a RISC-V based accelerator and consists of a set of defined hardware interfaces,
enabling a wide range of accelerators and processors to be emulated. This results in a platform
that permits rapid development and testing of new HPC and High Performance Data Analytics
(HPDA) hardware accelerators and the associated software ecosystem. The initial targeted soft-
ware stack is presented in Section 2, comprising of existing HPC and emerging HPDA applications
in fields such as machine learning, computer vision, and deep learning, co-designed with those
accelerators to meet the desired power and performance expectations.

We demonstrate MEEP’s SDV and hardware emulation capabilities by mapping an accelera-
tor called the Accelerated Compute and Memory Engine (ACME) into MEEP. ACME separates
computation and memory operations into compute and memory tiles similar to [24]. All tiles
are interconnected by a Network-on-Chip (NoC) to ensure scalability. The compute tiles feature
RISC-V scalar cores supporting a variety of coprocessor accelerators with a common set of inter-
faces. Those coprocessor accelerators support vector operations executed on a Vector Processing
Unit (VPU) or alternatively, Systolic Arrays (SA) for image processing and neural networks, all
connected to the scalar core through the Open Vector Interface (OVI) [22]. Furthermore, the
memory tile is responsible for satisfying all memory operations.

Section 3 describes the ACME architecture in greater detail. Section 4 details the FPGA
infrastructure and mapping ACME into the MEEP platform. We provide a synopsis of related
work in Section 5 followed by a conclusion with a description of future work of this project.

1. MareNostrum Experimental Exascale Platform (MEEP)
MEEP is a flexible FPGA-based emulation platform based on European IP blocks, that ex-

plores hardware/software co-designs for Exascale Supercomputers and other hardware targets.
As a platform, MEEP provides a foundation for building European-based chips and infrastruc-
ture to enable rapid prototyping, using a library of IPs and a standard set of interfaces to the
Host CPU and other FPGAs in the system, using the FPGA Shell (refer to Section 4.1). In
addition to RISC-V architecture and hardware ecosystem improvements, MEEP also advances
the RISC-V software ecosystem with an enhanced and extended software toolchain and software
stack, including a suite of HPC and HPDA applications.

MEEP ambitions to play two important roles within the Exascale computation paradigm:

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 63

• SDV platform: Enables software development and experimentation, accelerating software
maturity compared to the software simulation limitations by enabling software readiness
for new hardware. In order to do this, MEEP executes the whole software stack, enabling
a set of tools and mechanisms to integrate new functionalities for future challenges in the
HPC and HPDA domains. MEEP is designed to run traditional HPC workloads and ecosys-
tems. Furthermore, we see a broader set of applications with high compute requirements in
new HPDA AI/ML/DL frameworks that will also be supported, as well as more complex
workflows based on experimental programming models (e.g., COMPSs). More details are
provided in Section 2.

• Pre-silicon validation platform: Allows testing and validating of new IPs blocks and/or
systems before being committed to silicon. Thus, MEEP can leverage the FPGA built-in
components and hardware macros, and efficiently map other components (IPs or custom
designs) to the available structures of the FPGA. In addition, MEEP provides a foundation
for building chips and infrastructure to enable rapid prototyping using a library of IPs and a
standard set of interfaces to the Host CPU and other FPGAs in the system using the MEEP
FPGA Shell (PCIe, HBM, DDR, Ethernet, and other interfaces), detailed in Section 4.

In Fig. 1, the whole MEEP software and hardware stack is shown. The underlying hardware,
emulated by an FPGA, is able to run the software stack including the Linux OS as described
in Section 2. The communication between the emulated hardware and software is enabled by
the MEEP FPGA Shell, which provides a set of standard interfaces to the I/O and memory
components available in the FPGA, such as memory controllers to the memory(s), Ethernet, or
PCI Express connectivity. Within the MEEP FPGA Shell, there is an emulation payload that is
user defined ranging from High-Level Synthesis (HLS) accelerators to RTL accelerators and/or
processors. In this paper, we present an emulated accelerator based on ASIC RTL containing a
self-hosted accelerator called ACME (refer to Section 3). Finally, MEEP provides a software and
hardware toolchain for debugging, profiling and performance monitoring.

2. Software Stack
The MEEP software stack includes all the levels at which the software can operate: from the

application level to the low-level operating system services (e.g., communication). Fig. 1 provides
a detailed view of this software stack running on top of the FPGA Emulated Hardware Accelerator
layer. We use a top-down approach to describe the software layers in the stack.

We have identified a set of target HPC and HPDA applications to demonstrate the SDV
capabilities of MEEP. These workloads include traditional HPC applications (e.g. Alya, Quan-
tum Expresso, OpenIFS, and NEMO), HPDA applications based on TensorFlow [5] and Apache
Spark [34] (e.g. MLperf, AIS-Predict and SMUFIN), and work-flows based on the COMPSs [16]
programming model (e.g. Guidance, MLMC, BioBB, NMMB-Monarch, and Dislib). This wide set
of applications provides a representative suite of highly-relevant HPC and HPDA workloads that
can be enabled with MEEP as an SDV, executing actual code on the emulated ACME accelerator.

We take a bottom-up approach to the software-hardware co-design methodology, in terms
of the SDV support. From the applications shown in Fig. 1, we extract simplified computation
kernels that represent a majority of the execution time of the application. These simplified, yet
high-relevance, software microkernels are considered as the starting point of the analysis and
verification process, and include kernels such as GEMM, SpMV, FFT, Somier, and AXPY. The
latter is used as a guiding example in Section 3.4. In addition to the mentioned workloads, we

The MareNostrum Experimental Exascale Platform (MEEP)

64 Supercomputing Frontiers and Innovations

Binding Commons

C/C++Python
Java

N
M

M
B

−
M

o
n

ar
ch

G
u

id
an

ce

M
L

M
C

B
io

B
B

(G

R
O

M
A

C
S

)

D
is

li
b

A
IS

−
P

re
d

ic
t

(T
F

)

T
F

 B
en

ch
m

ar
k
s

S
p
ar

k
 B

en
ch

m
ar

k
s

S
M

U
F

IN

H
P

L
,
H

P
C

G

COMPSs/PyCOMPSs BLASDA

Python, SCALA,

C/C++ C
/C

+
+

F
o

rt
ra

n

A
ly

a

Q
u

an
tu

m
 E

sp
re

ss
o

F
F

T
X

li
b

N
E

M
O

 +
 I

F
S

 (
IF

S
K

er
)

S
p
M

V
,

..
.

HPC Applications

MPI + X

Fortran, C/C++

(O
p

en
B

L
A

S
)

Linux

COMPSs Runtime Spark, PyTorch

TensorFlow

OmpSs−2, OpenMP

MPI

P
er

fo
rm

an
ce

 M
o
n
it

o
rs

H
W

/S
W

 T
o
o
ls

:
L

L
V

M
,
 G

D
B

,
P

ro
fi

li
n
g

MEEP Shell

FPGA Emulated Hardware

H
ar

d
w

ar
e

S
o
ft

w
ar

e

G
E

M
M

,
B

o
lt

6
5

,
F

F
T

,

Accelerator (i.e., ACME), Processor,...

D
o

ck
er

M
E

S
O

S

C
lo

u
d

s

Compiler

BLAS

Figure 1. Full Stack of the MEEP design

also include a set of benchmarks and kernels. Benchmarks such as the High-Performance Linpack,
Conjugate Gradient, or other mock-up applications like the FFTXlib code reproduce the behavior
of the Quantum Expresso, enabling the testing of the expected system performance using a simpler
code rather than the entire application. In the HPDA context, the TensorFlow and Apache Spark
benchmarks are used to test data analytic service behavior. Finally, once all of these smaller
codes run on the SDV, we can execute the complete applications with confidence. Note, this set of
applications and benchmarks also includes applications requiring specific hardware characteristics
such as the processing of images or natural languages. The main objective of this set of programs is
to evaluate the performance of special-purpose hardware accelerators, i.e., SAs and data streaming.

Below the application level we can find the compiler support and the use of different program-
ming languages. The MEEP project bases its optimization support on LLVM and Clang [14]. In
this context, we are developing compiler extensions that exploit the performance of the ACME
architecture features. The set of selected applications imposes a great variety of programming
languages (e.g. C/C++, Fortran, Java, or Python), but the lack of sufficient software ecosystem
maturity currently limits the direct use of all these application and certain optimizations. When
this is the case, we rely on the generic compilation mechanism supported by the system and the
use of third-party optimized libraries to exploit features or limited capabilities of the RISC-V
software ecosystem and toolchain.

In addition to the compilation support, the applications have additional libraries and services
for commonly optimized algorithms for the platform (e.g. BLAS-like library services). Additional
examples include support for run-time libraries for the traditional HPC applications and new work
flows (i.e., MPI [17], OpenMP [18], and COMPSs [16]). Porting and optimizing these libraries and
services for the RISC-V based ACME architecture is a huge step in the direction of abstraction
between the application level and the platform’s OS, as well as generally improving the RISC-V
software ecosystem maturity.

Further, the ACME architecture also supports the use of containers as the fundamental mech-
anism to pack, deploy and offload the execution of kernels and applications. The implementation
process for containerization is initially based on the COMPSs programming model, as it is consid-

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 65

VAS TileVAS TileVAS Tile

VAS Tile VAS Tile VAS Tile VAS Tile

VAS Tile

VAS Tile VAS Tile VAS Tile VAS Tile

JTLB

Memory Tile

Memory Tile

Memory Tile

Auxiliary

CPU

Auxiliary

CPU

VAS Tile VAS Tile VAS Tile VAS Tile Memory Tile

Auxiliary

CPU

Auxiliary

CPU

Memory Tile

Memory Tile

Memory Tile

Memory Tile

JTLB

JTLB

JTLB

N
V

R
A

M

H
B

M
3

,+

H
B

M
3

,+

N
V

R
A

M

Figure 2. An overview of the Accelerated Compute and Memory Engine (ACME)

ered the most complex use case. There is the more common approach that packages application
tasks, phases or stages in containers. However, if this cannot be supported by the application,
we can use a different approach where the container is considered as a single-phase work-flow
execution, i.e. a COMPSs application is defined a single task or container.

The OS is the lowest software layer in the software stack and MEEP relies on the Linux OS
as the engine for this hardware abstraction. A modified, lightweight version of Linux takes care
of the low-level duties such as discovering, enumerating, and initializing all physical components
of the system. In order to reduce data movement in the system, the ACME architecture executes
most of the application code in the accelerator (a self-hosted accelerator), requiring a minimal set
of OS features for this execution mode. The traditional Host CPU provides services, like global
resource management and name services. However, for pragmatic implementation reasons, ACME
also supports a traditional offload execution mode, similar to what is used for General Purpose
GPU computation today. In both execution modes, a minimum OS support is required in ACME
to configure the hardware and provide the fundamental services: application execution, access to
memory, or offload and execute a kernel.

3. Accelerated Compute and Memory Engine (ACME)
The ACME accelerator, as a demonstrator for MEEP, represents the desire to improve the

performance for dense as well as sparse workloads. Dense workloads are compute bound, since the
performance depends on the number of fused multiply-add (FMA) or fused multiply-accumulate
(FMAC) units available in the system, coupled with a reasonable memory hierarchy that can
efficiently exploit caching and data reuse. Unfortunately, sparse workloads are limited by the
memory bandwidth and hence the focus shifts from computational units to maximizing memory
utilization. The purpose of ACME is to find a reasonable balance between the memory hierarchy
design for sparse workloads and the FMA architecture for dense workloads.

ACME relies on multiple specialized cores to manage the internal and external resources to
improve energy efficiency and performance. It decouples the arithmetic and memory operations
by disaggregating the memory access from the execution [24].

3.1. Overview

Moving from a high level view of ACME (Fig. 2) down to a more detailed view (Fig. 3), the
core of the accelerator is the Vector And Systolic (VAS) Accelerator Tile. It consists of a cluster of

The MareNostrum Experimental Exascale Platform (MEEP)

66 Supercomputing Frontiers and Innovations

Core4

Core5

Core6

Core7

Systolic

VPU

ArrayNoC
Router

L2
Slices

L2
Slices

Core0

Core1

Core2

Core3

C
ro

ss
b

ar

L1

Cache

Scalar

Core

VAS Tile

Figure 3. The VAS Tile of ACME

eight scalar RISC-V cores with each core having the capability of supporting several coprocessors:
a Vector Processing Unit (VPU) with 16 vector lanes, and based on the targeted application,
different Systolic Arrays (SA) designs.

Each VAS Tile includes a distributed L2 data cache of 4MB in size with 16-ways and 16 banks.
This L2 can be reconfigured partially to function as a scratchpad depending on the type of
workload. Through a NoC, the VAS Tiles are able to communicate with the Memory Tiles to
facilitate memory operations decoupling access and execute operations.

Each Memory Tile consists of a Memory CPU (MCPU), which organizes and dispatches
memory requests originating in the VAS Tiles to the associated Memory Controller (MC) and
its attached slice of the overall High Bandwidth Memory (HBM). The memory address space is
mapped across 16 MCs. Therefore, requests that are out of the address range of the current MC,
need to be forwarded to the Memory Tiles and MCs that own that address range. The current
implementation of ACME integrates HBM due to the limitations of the MEEP FPGA platform.
However, non-volatile memories (NVRAM) technologies will be considered in the future [33], when
available.

ACME is equipped with four auxiliary CPUs, which are similar to the MCPUs. Those CPUs
establish the connectivity to the external components and also run the OS with its daemons and
services which are usually provided by the host CPU. Therefore, ACME becomes self-sufficient,
orchestrating its own internal resources and hence it is a self-hosted accelerator. By enabling
this capability in ACME, the application data can be stored in a single location and does not
have to be moved between the host CPU and accelerator, saving significant cost and energy. In
this scenario, we envision the host CPU only having reduced capabilities to provide storage and
naming services to supply data and organize communication.

3.2. Memory Tile

Each Memory Tile is equipped with a Memory Controller (MC), a slice of HBM, a Jumbo
Translation Lookaside Buffer (JTLB) for address translation and the MCPU as the central element
of the Tile. In order to minimize hardware overhead and benefit from shared structures and
resources, the MCPU is a fine-grain multithreaded core, a standard RISC-V RV64IMAC core
without support for floating-point operations, that is biased to manage memory requests and
related operations. There is a one-to-one mapping of hardware threads in the MCPU and hardware
threads in the VAS tile. The bonded threads form the decoupled access/execute architecture in
ACME. Additional MCPU architecture details will be determined by simulation [19].

3.2.1. MCPU memory access orchestration

The MCPU maintains a queue of outstanding memory requests for its associated memory
controller. It is able to reorder those outstanding requests based on the DRAM page to be opened

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 67

and the age of the request, avoiding starvation which may produce exceptionally long latencies.
These requests are enriched with meta-data indicating the destination of the data in the VAS
Tile such as the cache, scratchpad or directly into the register file. Based on the access patterns
from other threads and cores, there may be multiple recipients for a single memory request that
the MCPU must track. In some cases, based on the spatial and temporal nature and number of
recipients for a particular set of addresses, it may make sense to store the entire DRAM page in
an L3 Row Buffer (RB in Fig. 4). This effectively creates a virtual DRAM open page, increasing
the DRAM interleaving and memory bandwidth, while reducing the latency.

Non-unit stride memory operations to scatter or gather single vector elements from specified
indices result in non-uniform access patterns which are typically performance limiting. In order to
optimize this case, the MCPU implements vector index registers to make the scatter and gather
operations more efficient and high performance. The goal is to provide unit stride data structures
to the VAS Tiles even for sparse data structures, dramatically improving the bit efficiency by
removing the parasitic bits that exist in traditional cache structures. Every byte in the vector
will be consumed by the VAS Tile, whereas in a traditional cache, the worst and sometimes very
common case is that only one word per cache line is consumed by the computation, although other
words are moved and stored throughout the on-chip memory hierarchy vs being pruned at the
memory controller. The MCPU supports this capability to only move around useful bits, saving
energy and improving performance.

The MCPU enables more advanced memory request reordering, caching DRAM pages to
improve access timings for multiple accesses, and coalescing non-unit stride data accesses. More-
over, further optimizations are possible based on the ability to specify and retain application data
structure information like the overall vector length. Thus, the MCPU can more deeply understand
how to manage the memory requests because a variety of program information is known without
requiring prediction. For example, the ACME architecture can take advantage of large memory
windows by providing vector memory access patterns before the application requires the data.
With this knowledge, ACME can provide better memory orchestration, increasing effective mem-
ory bandwidth, and reducing unnecessary data movement on chip, especially for non-unit stride
access patterns. Thus, ACME shifts the energy usage in the system based on the type of applica-
tion. For dense applications that are compute bound, the MCPU utilization is very low, enabling
most of the system energy to be directed to the VAS Tiles and associated accelerators. However,
for sparse workloads, the MCPU utilization is high as it optimizes the memory hierarchy, shifting
energy to the MCPUs and away from the VAS Tiles.

3.3. Vector and Systolic (VAS) Accelerator Tile

ACME is targeting both dense and sparse workloads which stress different aspects of the
architecture. As a result, ACME adapts the number of active vector lanes per core depending
on the arithmetic intensity. The VAS tile is composed of several scalar cores. Each scalar core
decodes and dispatches instructions to the tightly coupled functional units and loosely-coupled
coprocessor accelerators. Thus, the scalar core issues and commits all instructions as a single
instruction stream, but the actual instruction execution depends on its type. Scalar instructions
are executed on the scalar core, vector instructions are executed on the vector coprocessor or
VPU, systolic array instructions are executed in the SA and memory operations are handled by
the Memory Tile.

The MareNostrum Experimental Exascale Platform (MEEP)

68 Supercomputing Frontiers and Innovations

The VPU is connected through an Open Vector Interface (OVI) [22] to the scalar core. In-
structions are forwarded, along with cache lines, over this interface to the VPU. This interface
is sufficient for applications with unit stride access patterns. For applications with data that is
not laid out in memory in unit stride, this interface suffers from significant performance and
energy degradation, transporting useless data from the DRAM, through the cache hierarchy to
the VPU and is then discarded. We call these bytes, parasitic bytes, consuming both energy and
performance. Thus, we extend the VPU to also have its own memory interface to a shared L2
scratchpad, where data is stored in a dense representation as unit stride vectors. The hardware-
managed scratchpad acts as a second level register file, enabling dynamic or virtual vector lengths
with streaming support to the accelerators. By using vector length agnostic programming tech-
niques, the application can convey application data structure details to the architecture. Not only
is all data in the scratchpad useful, ACME also exterminates the parasitic bytes.

In addition, the SAs use the same OVI interface to the scalar core and memory interface to
the scratchpad, enabling a wide variety of SA implementations, from image and video processing
to neural networks. Historically, SAs are set up as memory mapped accelerators with on-chip
memory regions that stream the data through the arrays with mailboxes to coordinate execution.
OSH enables new instructions to be defined, leveraging the software toolchain to manage resources
more effectively. Thus, we can use traditional memory and compute operations defined as custom
RISC-V instructions to control and orchestrate these accelerators. Finally, the SAs share a common
infrastructure even though they are computationally different. We implement a common SA shell
that provides the coprocessor interface, as well as a memory interface to the L2 scratchpad to
support multiple SA variants.

Each core in the VAS Tile supports up to 8 threads to hide memory latency for sparse
workloads. A single-threaded mode is also supported to target dense computations using all the
computational resources. This applies to kernels like GEMM or the computations performed by
the SAs. The multithreaded mode targets sparse workloads that are memory-bandwidth bound to
balance the memory bandwidth with the computational intensity (number of vector lanes). More
threads each bound to a fusion of vector lanes, are supported to hide the memory latency. The
smallest unit of vector compute is two vector lanes or a vector-lane pair. Within the VPU, multiple
vector-lane pairs can be fused together, with up to 16 lanes (most useful for single-threaded dense
applications). We believe this combination of multithreading and long virtual vectors enables a
very large memory window to maximize HBM utilization and efficiency. In this case, we have
selected a coarse-grain multithreading approach that enables the scalar cores to coordinate all
the work required to support the various coprocessors. This configuration provides a lot more
flexibility with regard to memory scheduling and opportunities for spatial and temporal locality
versus a very long Virtual Vector Length (VVL) alone. Ideally, this also leads to a better dynamic
load balance in the system.

3.4. Example SAXPY

In this section, we describe how the various components of ACME interact. For clarity, we
focus on only one scalar RISC-V core in the VAS Tile and one Memory Tile as shown in Fig. 4.

For this example, we use a dense vector length agnostic SAXPY kernel example to explain
the execution model. Vector instructions are forwarded to the VPU from the scalar core using
the OVI, while vector memory operations are directed to the Memory Tile by the scalar core. A
VAS Tile always forwards the memory operation to the same Memory Tile, to the bonded MCPU

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 69

Arbiter

L2

Scratchpad

RISC−V

Scalar Core

Router
NoC

Router
NoC

L2 I

Cache

VPU SA1 SA2

OVI

V
A

S
 T

il
e

M
em

o
ry

 T
il

e
MCPU

HBM

MC

L3/RBJTLB

Figure 4. A simplified ACME used in the example

hardware thread. Hence, the MCPU in that tile is aware of the state of the program executed on
the scalar core.

The application to be executed is Z = aX + Y , a function from the standard Basic Linear
Algebra Subprograms (BLAS) library [3]. There are two input vectors in listing 5, X and Y ,
with n single precision (32 bit) floating point values each and a scalar value a. In the listing, the
application vector length (AVL), n, is stored in register a0, the value of a is stored in fa0, while
the elements for X and Y are located at the addresses stored in registers a1 and a2, respectively.

First, a vsetvli instruction is executed by the scalar core and forwarded to the MCPU as
a transaction. It contains the AVL from a0, the type of the elements (e32), the vector register
grouping (m8) and the desired Virtual Vector Length (VVL). The MCPU processes the request and
sets the VVL for all subsequent memory operations (until the next vsetvli) and acknowledges
the transaction. Note, the novelty of ACME is that the VVL can be larger than the Physical
Vector Length (PVL) that the VPU’s 1st level Vector Register File (VRF) supports. ACME
implements a dual purpose L2 memory structure that can operate as a cache and/or scratchpad.
To accommodate the entire VVL of the vector load instruction (vle) in line 3, dedicated scratchpad
memory space needs to be reserved and associated with v0.

As an example, consider the AVL to have 106 elements, while for single precision values
PVL = 4. In this scenario let VVL = 16. Therefore, the vector load returns a vector containing
16 elements to be stored in the scratchpad and the opportunity to preload the first 4 elements
into the VRF as PVL.

The next instruction is a vector load instruction (line 3). It instructs the scalar core, to start
filling vector register v0 with elements starting from address in a1. A transaction containing this
instruction is forwarded to the MCPU, which starts collecting the elements from the indicated
address. In case of an ACME having multiple Memory Tiles, and if the address is not in the
range of the attached physical memory, transactions are created with the addresses of the missing
elements and forwarded to the Memory Tiles that serve the requested addresses.

Based on the vector lengths computed earlier, the MCPU starts returning VVL elements. A
scoreboard mechanism inside the VAS Tile keeps track of the data arrival and stores it into the
vector registers and allocated space in the scratchpad.

Since this program is a dense workload, this load instruction represents a loading pattern
with unit strides. Sparse workloads are indicated by non-unit stride or gather/scatter memory
operations. In case of a load instruction, the MCPU collects the required elements and coalesces
them into a dense vector. The opposite is done with stores, sending data from the scratchpad
to memory. Therefore, NoC bandwidth and memory storage is preserved by avoiding handling
elements, which are discarded eventually.

The MareNostrum Experimental Exascale Platform (MEEP)

70 Supercomputing Frontiers and Innovations

1 saxpy :
2 v s e t v l i a4 , a0 , e32 , m8 ; d e t e rm ine VVL from AVL
3 vle32 . v v0 , (a1) ; l o ad v e c t o r
4 sub a0 , a0 , a4
5 slli a4 , a4 , 2
6 add a1 , a1 , a4
7 vle32 . v v8 , (a2)
8 vfmacc . vf v8 , fa0 , v0 ; Z = aX + Y
9 vse32 . v v8 , (a2) ; s t o r e v e c t o r

10 add a2 , a2 , a4
11 bnez a0 , saxpy ; jump to next l oop i t e r a t i o n
12 ret

Figure 5. The assembly source code for a RISC-V with vector instructions from the vector ex-
tension in bold

The next three instructions in Fig. 5 in lines 4–6 are scalar instructions executed on the scalar
core itself, while the following vector load in line 7 is similar to the one in line 3.

The FMAC vector instruction (line 8) is forwarded to the VPU together with the scalar value
in register fa0. The result of that operation is stored back into v8. This requires a coordinated
streaming of input and output data for the operands in the scratchpad, and in this case a shared
source and destination register.

Once the entire VVL has been computed, the vfmacc instruction is retired. Since a store
instruction follows, a transaction with the data in the scratchpad region associated with v8 is
issued to the Memory Tile, which then moves the data back into the HBM.

This concludes one iteration of the loop, in which a part of the entire application vector
has been computed. In case of AVL > VVL multiple iterations of the loop are executed. Since
the MCPU is aware of AVL as well as VVL, due to the vsetvli instruction initially sent to
the MCPU, multiple repeating memory operations with different offsets are expected. Therefore,
while the VPU computes the results for the current iteration, the MCPU is able to preload the
next vector with VVL elements and temporarily store it in its L3 RB to have it ready as soon
as the first load instruction of the next iteration arrives at the Memory Tile. Hence computation
and memory access are parallelized.

ACME offers many opportunities to further optimize the architecture. For instance, a scaled
down version of the program executing on the scalar core may be executed on the MCPU similar
to [11] or [25]. However, this is part of the future work and exploration.

3.5. Simulating ACME

The development of new architectures involves high level decisions that determine the general
flavor of the design. These decisions, which include details such as core counts or the overall cache
hierarchy, should be made early, via simulation, so later FPGA-based analysis can focus on what
it should: lower level details. In the case of ACME, more aggressive design points require early
investigation before implementation, like the proposed novel data handling schemes of the MCPU
and its automatically managed scratchpad. However, simulation of HPC-capable architectures
is still time-consuming, due to the size of the workloads and number of cores that need to be
simulated in order to fully exercise the modelled system. This is at odds with the very purpose of

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 71

early simulation, which is performing large amounts of executions to identify certain parameters
of the system and evaluate new ideas.

For the reasons above, MEEP proposes Coyote [19], a new execution-driven simulator for the
RISC-V ISA. Coyote strikes a balance between simulation throughput and fidelity by focusing
on the modelling of the data movement throughout the memory hierarchy. This captures the
right amount of detail to enable the comparison of different designs while preventing simulation
times from growing beyond the limits of reasonable design space exploration. To leverage previous
community efforts, Coyote is based on two pre-existing simulators: Spike [21] and Sparta [23].
Spike, as the open-source golden-standard for RISC-V, provides the capabilities for functional
simulation, including the vector extension and also the modelling of L1 caches. Additionally, it
has been extended to support other features such as RAW dependency tracking and different
instruction latencies. Sparta, a framework to build event-driven simulators developed by SiFive,
sits on top of Spike to provide the modelling capabilities for the memory hierarchy of the system,
which is exercised by events generated by the execution of simulated applications in Spike.

In order to reduce the overhead of the interaction between the two pieces that build Coyote,
they have been integrated as slaves into a simulation orchestrator. It is in charge of managing the
communication of events between the functional and the event-driven side of Coyote and keeping
the clocks synchronized. In every cycle, an instruction is simulated in each of the simulated active
cores. The simulation of an instruction might have different effects:

• A RAW dependency might be detected in the registers that are read. In this case, the core
is marked as inactive. It will not be able to execute again until after the dependency is
satisfied.

• An event that needs to be communicated to the Sparta event-driven engine might be gen-
erated. This includes requests to the L2, interactions with the MCPU and more.

After the simulation of instructions, events are submitted to Sparta. Then, the Sparta clock is
advanced and events are handled. Submitting an event to Sparta will internally generate a chain of
events that will correctly exercise the modelled memory hierarchy and interact with the MCPUs.
The end result of this chain of events is usually an interaction back to the simulation orchestrator,
that will update certain values in Spike. An example of this is marking a RAW dependency as
satisfied when a memory access submitted to the L2 is satisfied. The handling of the different types
of events has been implemented following the visitor design pattern, for easy maintainability and
extensibility.

Coyote models tiled architectures similar to ACME. This includes core-private L1s and a slice
of banked L2 per tile. The L2 can be configured as private to the cores that belong to a tile or
fully shared across the system, forming a NUCA. A basic memory controller, which implements
a subset of memory commands and different address mapping policies. The NoC connecting the
tiles and memory controllers is modelled implementing three different levels of accuracy, ranging
from a very simple model based on the average number of cycles to travel through the network
to a detailed one that is based on the well-known Booksim simulator [13] (integrated also as a
slave to the simulation orchestrator). Many of the parameters regarding the sizing and timing of
each of the components can be configured through parameters in order to evaluate the behavior
of different configurations.

With respect to applications, Coyote executes baremetal applications compiled using either
the standard GNU compiler for RISC-V or the EPI compiler, if vector intrinsics are used. As a
result, it produces general statistics related the use of the memory hierarchy, such as the miss rate

The MareNostrum Experimental Exascale Platform (MEEP)

72 Supercomputing Frontiers and Innovations

Core0

Core1

Core2

Core3

Time

input data1 input data2 result stack

Figure 6. Paraver L2 miss trace for a 4 core matrix multiplication. Different accessed data struc-
tures have different colors

M0

M1

M2

M3

M4

M5

M6

M7

V0

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

(a) Fully shared cache forming a NUCA

M0

M1

M2

M3

M4

M5

M6

M7

V0

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

(b) Tile with private L2 caches

Figure 7. Heatmap (the lighter the shade, the sparser the traffic) for the destination of packets
(M – Memory Tile, V – VAS Tile) in a matrix multiplication

per L2 slice, the number of stalls in the L2 due to MSHR exhaustion or the amount of requests
serviced by each memory bank. Coyote can also produce a trace that can be visualized using
paraver [20] to identify patterns and analyze the behavior of applications in detail. As an example,
Fig. 6 shows a portion of an L2 miss trace for a vector matrix multiplication using 4 simulated
cores. Misses for different data structures have different colors, which eases the behavioral analysis
and and helps to identify patterns. Regarding the NoC, Coyote also produces a heat map to easily
identify hotspots, which are potentially related to inefficient data management. Figure 7 compares
two heatmaps for a vector matrix multiplication simulated on a 16 VAS Tile and 8 Memory Tile
configuration. Memory Tiles are placed in the first and last columns, for a scaled down version
of the proposed ACME layout shown in Fig. 2. Both heatmaps are for the execution of the exact
same application and only differ regarding how the L2 is shared, either forming a NUCA across all
the tiles (Fig. 7a) or private to each tile (Fig. 7b). This figure shows that the NUCA generates a
lot more traffic indicated by the darker shades, among the VAS tiles, while relieving the memory
tiles (lighter shades).

As a result of its modelling capabilities and its overall design, which strikes a balance between
fidelity and simulation throughput, Coyote can provide insight into how high level design decisions

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 73

SLR2

SLR1

SLR0DDR4

DDR4

QSFP+ 1

QSFP+ 0

HBM HBM

PCIe

G
T

Y

G
T

Y

Figure 8. The Xilinx Virtex Ultrascale+ VU37P with HBM combines three Super Logic Regions
(SLR) and HBM to a System-in-Package (SiP). The shaded blocks are part of the MEEP Shell

impact the performance of HPC architectures. This enables the evaluation of different designs prior
to more costly FPGA implementation and emulation.

4. FPGA
FPGAs enable MEEP to provide silicon validation capabilities. MEEP consists of 12 nodes

comprising 8 Xilinx Virtex Ultrascale+ FPGAs [31], each able to establish a dense interconnect
among the FPGAs. Those FPGAs exhibit up to 500 Mb of total on-chip integrated memory, in
addition to up to 16 GB of HBM. With these characteristics, MEEP is a foundation for hardware
emulation and SDV for other projects as eProcessor [8], and can be exploited in projects such as
DRAC [15] or OpenPiton [7].

Xilinx Virtex Ultrascale+ FPGAs are built on top of a silicon interposer, connecting three
Super Logic Regions (SLRs) together in the same package (System in Package, SiP). The connec-
tions among the SLRs are silicon based vias labeled as Super Logic Lines. This technology allows
the FPGA part to exceed traditional sizes. They may be thought as three smaller FPGAs fused
together in the same silicon forming a new larger device (refer to Fig. 8).

These FPGAs contain up to 1.3M LUTs, 260k Flip-Flops (FF), 2k BRAMs (36 Kbits) and 9k
DSPs, among other common elements. In addition, the FPGAs contain integrated hard IPs such
as PCIE4C (PCIe Gen4), CMAC (100 Gbit Ethernet), and memory controllers for the HBM and
DDR RAM. A common collection of I/O and memory interfaces are implemented for these building
blocks, which facilitates the use of MEEP as a silicon validation platform. These interfaces define
the MEEP FPGA Shell, which is the foundation for an engine to enable the SDV and pre-silicon
validation cycle.

4.1. FPGA Shell

The FPGA implementation is composed of two main components: the MEEP FPGA Shell
and the emulation region for accelerators and/or CPUs. The MEEP FPGA Shell is a static, cus-
tomizable perimeter architecture which guarantees that the emulation region remains portal/in-
terchangeable across any other FPGA package or device that meets the defined I/O and memory
interface specifications. The MEEP FPGA Shell goes beyond Xilinx’ approach, which consists of
multiple proprietary platforms, which may not meet the demands of the accelerator. Instead the
MEEP FPGA Shell is fully customizable by the user to match a given FPGA architecture. On
top of that, the MEEP Shell provides QDMA, FPGA-to-FPGA and Ethernet solutions, which
Xilinx platforms lack. One example for an accelerator is ACME (refer to Section 3), but others
can be considered as well as shown in Section 4.2.

The MareNostrum Experimental Exascale Platform (MEEP)

74 Supercomputing Frontiers and Innovations

100G Ethernet

Subsystem

AXI DMA

Engine

RX

AXI Stream AXI Stream

TX

RX Memory

TX Memory
TX AXI−MM

RX AXI−MM

DMA AXI Lite

Control/Status

AXI−MM

AXI−MM

QSFP+ MAC AXI Lite

Figure 9. The MEEP FPGA Shell Ethernet IP. It can be used as long as the accelerator is
compliant with the specified interfaces

The basic components of the MEEP FPGA Shell are PCIe, HBM, 100 Gb Ethernet, and
Aurora for raw FPGA-to-FPGA communication. A DDR4 controller can also be included, which
is used to simulate an envisioned Non-Volatile Memory (NVRAM), which is part of a future system
beyond the scope of this project. The Shell is generated through a TCL-based script which lets the
user create a custom MEEP FPGA Shell configuration, followed by the actual building process,
parsing the emulated accelerator and checking that all the desired connections between the MEEP
FPGA Shell and the accelerator engine are instantiated.

For the experiments, the Alveo U280 featuring the Xilinx Ultrascale+ VU37P FPGA [30] will
be used to implement the MEEP FPGA Shell as well as emulate the ACME accelerator.

4.1.1. PCIe interface

As part of the MEEP FPGA Shell, PCIe implements the communication interface between
the host and the emulated hardware. PCIe is already included as a hard IP in the VU37P FPGA,
resulting in a reduction of resource requirements when compared to pure soft-logic PCIe imple-
mentations. Xilinx supports two different types of PCIe blocks, XDMA and QDMA. The Xilinx
platforms or Amazon F1 utilize the XDMA block. However, MEEP FPGA Shell focuses its efforts
on the QDMA implementation for flexibility and streaming capabilities.

The main difference between QDMA and other DMA offerings is the concept of queues,
derived from the queue set concepts of Remote Direct Memory Access (RDMA) from high-
performance computing (HPC) interconnects. These queues can be individually configured by
the interface type. Based on how the DMA descriptors are loaded for a single queue, each queue
provides a very low overhead option for continuous update functionality. The QDMA solution
supports multiple Physical/Virtual Functions with scalable queues, and is ideal for applications
that require small packet performance at low latency, as well as streaming data. QDMA offers
more functionality at slightly higher resource costs with two advantages: First, it implements a
high performance configurable scatter/gather DMA for the PCIe IP. Second, the IP provides an
AXI4-Stream user interface in addition to AXI Memory Mapped and AXI-Lite. QDMA can be
set to PCIe Gen3 or Gen4. In both cases, the peak bandwidth is 16 GB/s in each direction.

4.1.2. HBM interface

The HBM is the high performance DRAM interface that massively increases system memory
bandwidth using SiP technology [27]. HBM enables maximum bandwidth, efficient routing and

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 75

Table 1. The clock frequencies and LUT utilization for various MEEP Shell IPs

Shell IP Frequency [MHz] User Clock Resources [LUT]

PCIe (QDMA) 250 Fixed 70376

HBM ≤ 450 Maximum 1539

Ethernet 322.26 Fixed 7444

Aurora ≤ 402.23 Maximum 1500

Aurora (DMA Mode) 4849

DDR4 300 Fixed 18823

logic utilization, and optimizes power efficiency for workloads that process large datasets. The
MEEP FPGA Shell provides a standard interface to HBM. An HBM stack of four DRAM dies
has two 128 bit channels per die for a total of 8 channels and a width of 1024 bits [29]. In
comparison, the bus width of GDDR memories is 32 bits, with 16 channels and a 512 bit wide
memory interface. Memory bandwidth for Xilinx Virtex Ultrascale+ FPGAs with HBM is up
to 460 GB/s delivered by two stacks of Samsung HBM2 with 8GB each. There is the flexibility
to access pairs of pseudo channels or aggregate all the pseudo channels across two stacks of
HBM together as a large memory access engine with much larger memory bandwidth and larger
granularity. In the context of the accelerator, HBM related logic can be clocked at up to 450 MHz.

4.1.3. Aurora interface

The MEEP FPGA Shell can be configured to use of GTY transceivers [28] for point-to-
point FPGA communication. Xilinx’ Aurora IP wraps up the transceivers and encodes a 64b/66b
protocol to provide enough state changes to allow a reasonable clock recovery and alignment
of the data stream at the receiver. This allows easy adoption of custom protocols inside the
accelerator which only needs to encode its own protocol in a 64 bit wide bus and assert a valid
signal once the data is ready. The accelerator can also rely on a DMA based solution. In this
scenario, the accelerator needs to configure the DMA to program transactions from the memory.
This communication interface is full-duplex, so the same principles apply for the receiver (RX)
and transmitter (TX). On the RX side, the implementation must be designed carefully though, as
there is no back-pressure capability and it must be ready to consume any incoming data. In the
context of MEEP, the user logic associated to the Aurora interface has been validated working at
frequencies of up to 402.832 MHz.

Xilinx transceivers are composed of four lanes in a configuration named Quad sharing a
common reference clock. With this configuration, each of the four lanes can be used to create
different topologies such as torus, hypercube, etc.

4.1.4. 100 Gb Ethernet interface

The MEEP FPGA Shell also includes a 100 Gb Non-Return-to-Zero (NRZ) Ethernet solution
shown in Fig. 9. It is built around the hard IP CMAC [32] and is present in the FPGA. This
solution creates a ready-made interface to grant Ethernet functionality between the accelerator
and any other device in the network, including an Ethernet switch. The accelerator only needs to

The MareNostrum Experimental Exascale Platform (MEEP)

76 Supercomputing Frontiers and Innovations

be compliant with several AXI interfaces in order to set-up, control and make use of the Ethernet
IP. The associated Ethernet user logic is clocked at 322.266 MHz.

4.1.5. DDR4 interface

DDR4 is offered in the MEEP FPGA Shell either as main memory or it can be used to emulate
NVRAM or other hybrid memory architectures with an order of magnitude higher effective ca-
pacity compared to HBM [12]. Current technology couples HBM with NVRAM as demonstrated
by Intel [6, 33]. The accelerator can leverage this MEEP FPGA Shell feature to emulate such
systems.

4.1.6. MEEP FPGA Shell details

In Tab. 1, a summary of the clocks associated with each of the MEEP FPGA Shell IPs is
shown. Depending on the design, the maximum frequencies allowed for the HBM and Aurora may
not be achieved by the other IPs, forcing the HBM and Aurora to be clocked down. The frequencies
for the PCIe, Ethernet, and DDR4 are fixed by the specifications and cannot be configured by the
user. As shown in the table, because the MEEP FPGA Shell leverages hard IPs, it only requires
approximately 100k LUTs in total, which amounts to 8% of the overall resources available in the
VU37P FPGA. The remaining resources can be used for the accelerator implementation.

4.2. Other Accelerator Examples Mapped to MEEP

The path to a fully functional ACME accelerator emulated in MEEP is in the near future.
However, there are several intermediate milestones that demonstrate the utility and capabilities
of MEEP. We present two different RISC-V IPs embedded in a user configurable MEEP FPGA
Shell. Due to the standardized interfaces, the integration reduces time for implementation and
validation, while the use of hard IP minimize the resource requirements of the MEEP FPGA Shell.
Thus, the MEEP FPGA Shell can be used as a foundation to test multiple accelerators, processors
or other IPs with varying configurations. The projects such as OpenPiton [7] and DRAC [15] are
both aligned with the concept of the accelerator. OpenPiton is scalable in terms of cores. On
the other hand, DRAC is a design which implements the scalar core of Lagarto and a VPU with
two lanes. Both have been packaged as two different accelerators using the MEEP FPGA Shell
as a demonstrator for the combination of the Shell and the accelerator. These projects serve two
purposes: enabling a general MEEP FPGA Shell that is reusable across multiple projects and
exploring a baseline IP to extend for ACME.

Embedding the accelerator into the MEEP FPGA Shell is straightforward, since only the in-
terfaces the Shell offers have to match (refer to Fig. 9), avoiding any other configuration overhead.

In both cases, the MEEP FPGA Shell has been configured by the user to contain a PCIe
QDMA and HBM without Aurora or Ethernet connectivity. The resource utilization in this con-
figuration is 5% of the total FPGA resources (compared to Tab. 1). Likewise, OpenPiton has been
mapped into the MEEP FPGA Shell as a many-core system consisting of four Ariane RISC-V
cores (RV64GC). Fig. 10 reveals that this OpenPiton configuration requires 28% of the overall
LUTs available on the FPGA. In comparison, DRAC with its Lagarto RISC-V core, including its
2-lane VPU requires 18% of the FPGA.

The use of the Shell significantly reduces implementation time during the accelerator de-
velopment, since all Shell features are supported out of the box, with a proven validated set of

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 77

LUT

LUTRAM FF
BRAM

URAM
DSP

BUFG

MMCM IO GT
PLL

PCIe
0

20

40

60

80
Accelerator MEEP Shell

Resource

U
til

iz
at

io
n

[%
]

OpenPiton 4× Ariane DVINO (Lagarto + VPU 2 Lanes)

Figure 10. Utilization report for OpenPiton in a many-core (4 RV64GC Ariane cores) and DRAC
(Lagarto and a 2-lanes VPU coprocessor)

interfaces. Connecting OpenPiton and DRAC to the Shell worked as expected the first time they
have been connected, demonstrating one of the main goals of MEEP, which is to provide a solid
hardware environment for software development and silicon validation.

As it is evident from Fig. 10, the selected accelerator does not have any impact on the I/O,
GT, PLL, nor PCIe resource requirements, while BUFG and MMCM are affected marginally. The
resources depicted on the right side in the figure belong to the MEEP FPGA Shell, which is the
same for both accelerators. Therefore, the limiting factor in embedding a different accelerator is
the availability of FPGA resources mentioned on the left side in the figure, mainly the LUTs and
BRAM.

5. Related Work
Several platforms targeting simulation accelerators and small-scale SDVs precede MEEP.

However, they are either closed source or do not support OSH and the related ecosystem. The
PROTOFLEX [9] project is an FPGA-based architecture to accelerate full-system multiproces-
sor simulation and to facilitate high-performance instrumentation. It is not a specific simulator
itself, but a template that offers a set of practical approaches for developing FPGA-accelerated
simulators. It virtualizes the execution of many logical processors onto a consolidated number of
multiple-context execution engines in the FPGA, which can be scaled, as needed, to deliver the
necessary simulation performance at large savings in complexity.

Another example is DIABLO [26], a cost-efficient FPGA-based emulation methodology, which
treats FPGAs as whole computers with tightly integrated hardware and software. DIABLO is not
based on FPGA prototyping, but uses FPGAs to accelerate parameterized abstract performance
models of the system instead. DIABLO is fully parameterizable and fully instrumented, and
supports repeatable deterministic experiments. Most of the efforts on its model are focused on
networking analysis and optimizations.

The MANGO [10] project is an FPGA-based many-core emulation platform. It facilitates
the exploration of heterogeneous accelerators for being used in HPC systems running multiple
applications with different Quality of Service (QoS) levels. To make this possible, MANGO has
explored different but interrelated mechanisms across the architecture and system software. The

The MareNostrum Experimental Exascale Platform (MEEP)

78 Supercomputing Frontiers and Innovations

platform provides a large-scale cluster of multiple FPGA boards intended for experimenting with
customized many-core systems, at the level of both processor and interconnect/system architec-
ture, along with the supporting software stack.

Mont-Blanc [2] was a predecessor of the European Processing Initiative (EPI) [4] relying on
the results of three consecutive projects (i.e., Mont-Blanc 1, 2, and 3), which explored the viability
of using highly energy efficient ARM-based processors for HPC. The main objective of Mont-Blanc
2020 was to start developing building blocks (IPs) for an HPC processor.

Conclusion and Future Work
A large community is required to develop the OSS and OSH ecosystem. We must build

tools and systems to enable independent development and exploration of software and hardware;
one cannot exist without the other. MEEP is a digital laboratory that enables RISC-V ecosystem
development for the HPC and HPDA domains based on a large-scale platform based on composable
and reuseable IP blocks. In order to rapidly move forward in the RISC-V ecosystem, we need tools
in the community to support software and hardware development. MEEP provides the former as
a large-scale SDV and the latter as a pre-silicon hardware emulation platform. Combined, MEEP
can realize a future vision HPC and HPDA accelerators in the form of the ACME architecture
and demonstrate this full stack.

We have implemented the first phase of the MEEP platform using four Xilinx Alveo U280 [30]
cards and have focused on the base infrastructure for the MEEP FPGA Shell, and a variety of
initial OSH cores, and multiprocessor SoCs. We see a bright future for the RISC-V ecosystem in
HPC and HPDA and plan to continue to develop and contribute using MEEP.

Acknowledgments
This work has been supported by the EU H2020 project MareNostrum Experimental Ex-

ascale Platform (MEEP), and funded by the European Commission under the grant agreement
No. 946002.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References
1. Fact Sheet & Background: Roadrunner Smashes the Petaflop Barrier (2008), http://www-03.

ibm.com/press/us/en/pressrelease/24405.wss

2. The Mont-Blanc Project (2020), https://www.montblanc-project.eu/

3. Basic Linear Algebra Subprograms (2021), http://www.netlib.org/blas/

4. The European Processor Initiative (2021), https://www.european-processor-initiative.
eu/

5. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-scale machine learning on
heterogeneous systems (2015), https://www.tensorflow.org/

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 79

http://www-03.ibm.com/press/us/en/pressrelease/24405.wss
http://www-03.ibm.com/press/us/en/pressrelease/24405.wss
https://www.montblanc-project.eu/
http://www.netlib.org/blas/
https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/
https://www.tensorflow.org/

6. Altman, A., Arafa, M., Balasubramanian, K., et al.: Intel Optane Data Center Persistent
Memory. In: 2019 IEEE Hot Chips 31 Symposium (HCS), 18-20 Aug. 2019, Cupertino, CA,
USA. pp. i–xxv. IEEE (2019), DOI: 10.1109/HOTCHIPS.2019.8875668

7. Balkind, J., McKeown, M., Fu, Y., et al.: OpenPiton: an open source hardware platform for
your research. Commun. ACM 62(12), 79–87 (2019), DOI: 10.1145/3366343

8. BSC: eProcessor: European, extendable, energy-efficient, energetic, embedded, extensible,
Processor Ecosystem (2021), https://www.bsc.es/research-and-development/projects/
eprocessor-european-extendable-energy-efficient-energetic-embedded

9. Chung, E.S., Nurvitadhi, E., Hoe, J.C., Falsafi, B., Mai, K.: PROToFLEX: FPGA-accelerated
Hybrid Functional Simulator. In: 2007 IEEE International Parallel and Distributed Pro-
cessing Symposium, 26-30 March 2007, Long Beach, CA, USA. pp. 1–6. IEEE (2007),
DOI: 10.1109/IPDPS.2007.370516

10. Flich, J.: MANGO: Exploring Manycore Architectures for Next-GeneratiOn HPC Systems. In:
2017 Euromicro Conference on Digital System Design (DSD), 30 Aug.-1 Sept. 2017, Vienna,
Austria. pp. 478–485. IEEE (2017), DOI: 10.1109/DSD.2017.51

11. Hashemi, M., Mutlu, O., Patt, Y.N.: Continuous runahead: Transparent hardware accel-
eration for memory intensive workloads. In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 15-19 Oct. 2016, Taipei, Taiwan. pp. 61:1–61:12.
IEEE Computer Society (2016), DOI: 10.1109/MICRO.2016.7783764

12. Izraelevitz, J., Yang, J., Zhang, L., et al.: Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019), http://arxiv.org/
abs/1903.05714

13. Jiang, N., Becker, D.U., Michelogiannakis, G., et al.: A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator. In: 2013 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), 21-23 April 2013, Austin, TX, USA. pp. 86–96. IEEE
(2013), DOI: 10.1109/ISPASS.2013.6557149

14. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In: Proceedings of the 2004 International Symposium on Code Gener-
ation and Optimization, 20-24 March 2004, San Jose, CA, USA. pp. 75–86. IEEE (2004),
DOI: 10.1109/CGO.2004.1281665

15. Leyva-Santes, N.I., Perez, I., Hernández-Calderón, C.A., et al.: Lagarto I RISC-V Multi-core:
Research Challenges to Build and Integrate a Network-on-Chip. In: Supercomputing, 25-29
March 2019, Monterrey, Mexico,. pp. 237–248. Springer, Cham (2019), DOI: 10.1007/978-3-
030-38043-4 20

16. Lordan, F., Tejedor, E., Ejarque, J., et al.: ServiceSs: An Interoperable Programming Frame-
work for the Cloud. Journal of Grid Computing 12, 1–25 (2013), DOI: 10.1007/s10723-013-
9272-5

17. Message Passing Interface Forum: MPI: A message-passing interface standard. Version 3.1
(2015), https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, accessed: 2021-
04-23

The MareNostrum Experimental Exascale Platform (MEEP)

80 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/HOTCHIPS.2019.8875668
http://dx.doi.org/10.1145/3366343
https://www.bsc.es/research-and-development/projects/eprocessor-european-extendable-energy-efficient-energetic-embedded
https://www.bsc.es/research-and-development/projects/eprocessor-european-extendable-energy-efficient-energetic-embedded
http://dx.doi.org/10.1109/IPDPS.2007.370516
http://dx.doi.org/10.1109/DSD.2017.51
http://dx.doi.org/10.1109/MICRO.2016.7783764
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
http://dx.doi.org/10.1109/ISPASS.2013.6557149
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1007/978-3-030-38043-4_20
http://dx.doi.org/10.1007/978-3-030-38043-4_20
http://dx.doi.org/10.1007/s10723-013-9272-5
http://dx.doi.org/10.1007/s10723-013-9272-5
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

18. OpenMP Architecture Review Board: OpenMP Application Program-
ming Interface 5.1 (2020), https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf, accessed: 2021-04-23

19. Perez, B., Fell, A., Davis, J.D.: Coyote: An Open Source Simulation Tool to Enable RISC-V
in HPC. In: Design, Automation, and Test in Europe, DATE (2021)

20. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A Tool to visualize and analyze
parallel Code. WoTUG-18 44 (1995)

21. RISCV: The Spike RISC-V ISA Simulator (2021), https://github.com/riscv/
riscv-isa-sim

22. Semidynamics: Open Vector Interface (2021), https://github.com/semidynamics/
OpenVectorInterface

23. Si-Five: The Sparta Framework (2021), https://github.com/sparcians/map/tree/
master/sparta

24. Smith, J.E.: Decoupled Access/Execute Computer Architectures. ACM Trans. of Computer
Sys. 2(4), 289 (1984)

25. Srinivasan, V., Chowdhury, R.B.R., Rotenberg, E.: Slipstream Processors Revisited: Ex-
ploiting Branch Sets. In: 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), 30 May-3 June 2020, Valencia, Spain. pp. 105–117. IEEE (2020),
DOI: 10.1109/ISCA45697.2020.00020

26. Tan, Z., Qian, Z., Chen, X., et al.: DIABLO: A Warehouse-Scale Computer Network Simula-
tor Using FPGAs. In: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, 14-18 March 2015, Istanbul,
Turkey. pp. 207–221. ACM, New York, NY, USA (2015), DOI: 10.1145/2694344.2694362

27. Wissolik, M., Zacher, D., Torza, A., Day, B.: Virtex UltraScale+ HBM FPGA: A Revolu-
tionary Increase in Memory Performance (2019)

28. Xilinx: UltraScale Architecture GTY Transceivers (2017)

29. Xilinx: AXI High Bandwidth Memory Controller v1.0 LogiCORE IP Product Guide (2019)

30. Xilinx: Alveo U280 Data Center Accelerator Card (2020), https://www.xilinx.com/
products/boards-and-kits/alveo/u280.html

31. Xilinx: Virtex UltraScale+ (2020), https://www.xilinx.com/products/silicon-devices/
fpga/virtex-ultrascale-plus.html

32. Xilinx: UltraScale Devices Integrated 100G Ethernet Subsystem v2.6 (2021)

33. Yang, J., Kim, J., Hoseinzadeh, M., et al.: An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. CoRR abs/1908.03583 (2019), http://arxiv.org/abs/1908.
03583

34. Zaharia, M., Xin, R.S., Wendell, P., et al.: Apache Spark: A unified engine for big data
processing. Communications of the ACM 59(11), 56–65 (2016), DOI: 10.1145/2934664

A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

2021, Vol. 8, No. 1 81

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/semidynamics/OpenVectorInterface
https://github.com/semidynamics/OpenVectorInterface
https://github.com/sparcians/map/tree/master/sparta
https://github.com/sparcians/map/tree/master/sparta
http://dx.doi.org/10.1109/ISCA45697.2020.00020
http://dx.doi.org/10.1145/2694344.2694362
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
http://arxiv.org/abs/1908.03583
http://arxiv.org/abs/1908.03583
http://dx.doi.org/10.1145/2934664

	A. Fell, D.J. Mazure, T.C. Garcia, B. Perez, X. Teruel, P. Wilson, J.D. Davis

