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Deep neural networks (DNNs) have grown in popularity in recent years thanks to the increase

in computing power and the size and relevance of data sets. This has made it possible to build

more complex models and include more areas of research and application. At the same time, the

amount of data generated during the training process of these models puts great pressure on

the capacity and bandwidth of the memory subsystem and, as a direct consequence, has become

one of the biggest bottlenecks for the scalability of neural networks. Therefore, the optimizing of

the workloads produced by DNNs in the memory subsystem requires a detailed understanding of

access to the memory and the interactions between the processor, accelerator devices, and the

system memory hierarchy. However, contrary to what would be expected, most DNN profilers

work at a high level, so they only perform an analysis of the model and individual layers of the

network leaving aside the complex interactions between all the hardware components involved

in the training. This article shows the characterization performed using a convolutional neural

network implemented in the two most popular frameworks: TensorFlow and Pytorch. Likewise,

the behavior of the component interactions is discussed by varying the batch size for two sets of

synthetic data and showing the results obtained by the profiler created for the study. Moreover,

the results obtained when evaluating the AlexNet version on TensorFlow and its similarity in

behavior when using a basic CNN are included.

Keywords: High-Performance Computing, deep learning, profiling, performance characteriza-

tion, memory consumption.

Introduction

In recent years, Deep Learning (DL) algorithms have become popular due to their ability

to extract features from input data. They are based on artificial neural networks and contain

a lot of hidden layers, which is why they are known as Deep Neural Networks [18]. This type

of network can contain millions of internal parameters resulting from multiple nonlinear and

iterative transformations that occur in matrix or tensory form.

Deep neural networks have been divided into several groups including Convolutional Neural

Networks, Recurrent Neural Networks (RNNs), and Long Short Term Memory (LSTM) [25].

These types of structures are used to create specific models according to a goal and require

a great computing capacity and significant time (depending on the complexity of the model

and computational resources) in their training to obtain a suitable model. It should be noted

that the vast majority of this training time is used in Matrix-by-Vector Multiplication (MVM)

tasks produced by convolutional or classification layers (dense layers). As mentioned earlier,

such structures contain a large number of parameters and that, together with MVM operations

performed on hidden layers, lead to a high transfer rate between memory, processor, and accel-

erator devices, requiring higher processing and memory capabilities. In this way, memory has
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become a limit to the model that can be studied and the amount of data used for your training.

Finally, it should be noted that MVM operations are highly parallelisable and therefore so are

the Deep Learning algorithms.

Most studies using memory profilers are based on high-level understanding of the individual

DNN layers or analytical models such as the Roofline [30] (roofline analysis helps to visualize

the limits imposed by the hardware, as well as to determine the main limiting factor - memory

bandwidth or computational capacity - thus leading to an ideal roadmap of possible optimization

steps [29]). These approaches do not capture the complex interaction between the CPU, memory,

and accelerator devices. As such, it only provides high-level memory performance sources in a

static CPU / Memory / Device configuration.

The purpose of this work is to present the analysis of the characterization of the resources

consumed in the training of a convolutional neural network implemented in both Tensorflow and

Pytorch in order to determine the behavior of the workloads and identify possible causes of the

bottlenecks in the training phase. The characterization has been performed using two synthetic

datasets of sixty thousand and six hundred thousand 32x32x3 tensioners and using values of 32,

64, 128, 256 and 512 for the batch size.

In Section 1, we present a summary of related works that address solutions for memory

problems in neural network training and where we start from as motivation for the realization

of this work. Section 2 describes the methodology used to carry out the study, detailing the

resources implemented in it. In Section 3, the reason for the memory problem presented during

training is described. In Section 4 the results are shown and an evaluation of them is made

according to the behavior obtained by the profiler. The last section concludes this paper.

1. Related Works

The requirements of computing capabilities for performing deep neural network training have

increased significantly in recent years. Similarly, each new model that emerges for a specific field

requires greater precision; much more complex and sophisticated models, with a larger number

of layers and neurons, increase the number of trainable parameters of the network [9, 12]. These

models dynamically generate tens or hundreds of MegaBytes of intermediate data (activations

or feature maps for convolutional layers) for each layer of the network, data that often exceeds

the capacity of the first levels of the memory hierarchy and puts enormous pressure on the

bandwidth of the main memory [5].

All of the above have forced accelerator designers for deep neural networks to use high-

cost memory solutions such as HBM (High Bandwidth Memory) used in Google TPUs [11].

Other solutions have been proposed to overcome these limitations such as the development of

new techniques to improve training by working directly on the neural network graph [3, 15]

or working with sparse matrices [20]. Designing specialized dense nodes for the effective use of

accelerators has also been done. These nodes include: NVIDIA Tesla A100, Google TPU, or Intel

GAUDI. On such nodes, training efficiency depends on model parallelization (HoroVod [24] and

KARMA [28]) and effective communications between accelerators performed by a specialized

network such as NVIDIA NVLink [16].

Now, despite these innovative designs, the use of increasingly deep and dense network topolo-

gies has made the resources available for training still a problem, particularly memory capacity.

In light of this, techniques such as using throttle memory as an application-level cache relative

to host memory have emerged during the training process [21]. This technique is very sensitive
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to communication bandwidth and can incur latency due to communication and data synchro-

nization. The use of disaggregated memory has also been considered [17], but it presents the

same bottleneck as the previous one: the PCIe bus.

Other solutions include ASICs (Application-specific integrated circuit) which can be up to

three times faster than general-purpose devices [8] and specialized accelerators such as DaDi-

anNao [4] where a nearby data processing approach is adopted and has a neural functional

unit that performs arithmetic operations and receives the values of the network weights from

adjacent eDRAM (Embedded DRAM) memory. Finally, other types of architectures have been

proposed which are memory-centric and where memory modules are added within the accelera-

tors. This type of architecture discusses memory modules decoupled from the PCIe and parked

locally within the interconnection of devices, using NVlink for example. This maximizes the

communication bandwidth between them while expanding the total memory capacity of the

system [14].

It should be noted that all these improvements in the hardware and the training methods

of deep neural networks aim both at increasing the performance of the model and reducing

the training times. Most of the research on the hardware used for training has been focused

on scaling the computational capabilities and their performances [7, 26, 32]. However, few have

addressed studies on the interactions of the hardware components involved in the process and

especially in the memory subsystem. The latter has become the most important bottleneck for

the scalability and performance of the models.

Finally, studies such as Chishti’s [5] from Intel Laboratories showed in a simulation en-

vironment called DLSim the problem previously raised along with memory barriers. None of

the profilers found, do a study of the problem from the point of view of communication and

interactions of the components involved in model training. This is the motivation for the study

presented in this paper.

2. Methodology

2.1. Model Selection and Dataset

There is now a large number of models and datasets covering fields such as image classifica-

tion, object detection, speech recognition, generative adversarial nets, and deep reinforcement

learning. These range from models with few hidden layers such as AlexNet [12] as well as

other highly complex ones that can require huge computational capabilities for their training

(Inception-v3 [27] as such as Resnet [9]). It is also important to note that many of the current

datasets are large because of the increase in data available to create them. As a result, it is

decided to first work with two synthetic datasets to control the total size of the dataset as well

as its dimensions. On the other hand, it has been decided to create a small convolutional network

model to analyze the interactions made during training with the main computational resources.

In general, convolutional neural networks repeat the same process layer by layer to abstract

more detailed features and finally end up with a fully connected layer to determine the class to

which the image entered at the beginning of the network belongs. Therefore, the use of a denser

model was ruled out, estimating that the process in each convolutional layer would have similar

behavior and that memory use would increase as a function of the number of filters used among

other hyperparameters and, would not present variability in the interaction of the hardware

components involved. The model used for testing has been implemented in both Tensorflow and
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Pytorch, its architecture is shown in Tab. 1. Finally, the AlexNet implementation in Tensorflow

is shown in order to observe the variation presented in the interaction of the components when

varying the model.

The two synthetic datasets were generated by simulating images of three channels each with

dimensions of 32x32. The sizes selected for the datasets were 60,000 (DT1) and 600,000 (DT2),

each representing an in-memory occupancy of 703 Mbytes and 6,867 Mbytes respectively.

Table 1. Convolutional Neural Network Model

Architecture

Layer (type) Parameters

1 Convolutional filters = 32, kernel size = 3x3

2 Max Pooling pool size = 2

3 Convolutional filters = 64, kernel size = 3x3

4 Max Pooling pool size = 2

5 Convolutional filters = 64, kernel size = 3x3

6 Flatten null

7 Dense units = 32

8 Dense units = 10

2.2. Frameworks Selection

Currently, there has been a constant development of both hardware and software tools

that are available for the implementation of the different machine learning algorithms. In terms

of software, the open-source frameworks available are Tensorflow [2], PyTorch [19], Keras [1],

Torch [6], CNTK [31], Caffe [10], among others.

Among the frameworks mentioned above, none has emerged as dominant in the field, and

therefore the choice of the TensorFlow and PyTorch frameworks has been made for their popu-

larity [13], their ability to work on accelerators such as GPUs, the simplicity of implementation,

and their programming similarity. Another essential reason for this choice is that the monitor

created to capture the interactions between training and computational resources is designed to

capture Python processes and threads in the operating system.

2.3. Tool for Characterizing the Resources Consumed

This section describes the tool developed for analysis. It is designed to capture the ex-

changes of the different computational resources that interact during the training process of

a convolutional neural network. Profilers exist to analyze the behavior of the models, such as

Tensorboard for TensorFlow and PyTorch Profiler for PyTorch, but they do not measure the

actual interactions between the different components involved during the training process.

The tool relies on two libraries, psutil and pynvml. The first one gives the information of

the running processes as well as the resources consumed by them in the system (CPU, Memory,

Disk, Network, Sensors). The second one is a wrapper for the NVML library that monitors and

manages several of the states of NVIDIA GPU devices: GPU Usage, Device Memory, PCIe

Bus Interaction, among others. The monitor9 captures and records the main computational

9https://github.com/alejandrotorresn/PhD/blob/master/monitor.py
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components that interact during model execution and training. It is designed to capture the

percentage of CPU usage, the amount of memory consumed, the percentage of GPU usage, the

total GPU memory, and the traffic on the PCIe bus generated by the GPU. The latter returns

two data: the first measures the data transferred and the second the data received by the device

through this channel. These values are recorded for the entire duration of the process execution

with an interval of approximately 0.5 seconds between samples. This interval is the maximum

reduction allowed by the library used for the monitor development.

2.4. Experimental Environment

To conduct these experiments we use two servers. One with the Centos 7.9 operating system

and the other with Debian 10. The first compute node is equipped with 4 Intel(R) Xeon(R) CPU

X7560 at 2.27 GHz processors with 64 cores in total, 125 GB of RAM, and 2 x Nvidia GeForce

GTX TITAN X cards each with 12 GB of memory. This is one of the nodes of the FELIX-

denomid GUANE cluster. On the other hand, to verify the results obtained, tests are carried

out on a node of the chifflot cluster in Lille belonging to Grid500010. This node is equipped with

two Intel(R) Xeon(R) Gold 6126 at 2.60 GHz processors with 48 cores in total, 192 GB of RAM,

and one 2 x Nvidia Tesla P100 cards each with 16 GB of memory. For both architectures, we use

only one card per server. The versions of the frameworks used are Tensorflow 2.2.0 and PyTorch

1.4.0. Essentially, it aims at verifying and compare resource consumption and its interaction by

using two types of GPUs with different compute capabilities and to show the orchestration of

resources of both frameworks in different architectures. The specifications of the GPUs used in

the test can be seen in Tab. 2.

Table 2. NVIDIA GPUs specifications

GTX TITAN X TESLA P100

Engine Specs

Architecture Maxwell Pascal

CUDA Cores 3072 3584

Base Clock (MHz) 1000 1189

Boost Clock (MHz) 1075 1328

Memory Specs

Memory clock (MHz) 1752.5 715

Memory clock - effective (MHz) 7010 1430

Memory size (GB) 12 16

Memory type GDDR5 HBM2

Memory Interface Width 384-bit 4096-bit

Memory Bandwidth (GB/sec) 336.5 732

These experimental environments will be used to measure the memory requirements neces-

sary for the training of CNNs, its source will be detailed in the next section.

10https://www.grid5000.fr/w/Grid5000:Home
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3. Memory Requirements and Use

As mentioned earlier, a variety of deep neural network types are specialized for a set of

specific fields. The study uses the model defined in Tab. 1, a model of convolutional neural

networks, which are designed for tasks such as computer vision, image recognition, or object

detection. The basic design of any neural network consists of an input layer, an output layer,

and multiple hidden layers. With regards to convolutional neural networks, each convolutional

hidden layer is responsible for extracting certain characteristics from the input data and sending

them to the next one. The first convolutional layers extract more general features while the

latter gets more refined features. Finally, the convolution block output data is usually sent to

fully connected layers to perform the classification task if that is the purpose of the model.

Convolutional neural networks are essentially composed of three types of layers that are

responsible for extracting characteristics, reducing the output data sizes of each layer, and

performing classification tasks as in the case of the simulated model in this work. The first is

known as a convolutional layer and applies a group of filters to the inputs generating a feature

map that is obtained from the convolution between the inputs and filters and the crossing of

these values by an activation function. Normally in convolutional layers, the Rectified Linear Unit

activation function (ReLU11) is used. This function has advantages over the preceding activation

functions such as its ease of calculation and greatly accelerates the convergence of stochastic

gradient descent compared to the sigmoid and Tanh functions due to its linear, non-saturating

form [23].

The following layer is known as Pooling and is responsible for reducing feature map sizes

using one of two widespread techniques: avg-pooling and max-pooling [22]. The process of

extracting features by convolutional layers and reducing data in pooling layers is performed

sequentially to the last layers that are known as Fully Connect layers. This type of neural network

contains three different types of data: inputs, weights, and feature maps. It is important to note

that the size of the feature map data is based on the batch parameter and the number of filters

used in the layer.

Once the network models are designed, they must go through the training process to obtain

the desired accuracy. This process is divided into a series of iterations where each involves a

path of the model both forward and backward, known as forward and backward propagation.

In forward propagation, the input data traverses the network from the first to the last layer

in subgroups of the size specified by the batch parameter. At the end of this step, the outputs

obtained are compared with the expected outputs (Supervised Learning), and with the back-

propagation algorithm gradient maps are generated that will allow updating the weights of the

network.

Within this order of ideas, memory and bandwidth needs arise due to the three types of

data mentioned above: inputs, weights, and feature maps. Also, another important source is the

gradient maps that are generated to update the weight. It is important to note that the feature

maps obtained from forward propagation should be kept in memory until the gradient maps

update the network values. This large amount of data generated by the network, along with the

size of the data set, is responsible for the memory limits on some hardware architectures.

The next section will show the results obtained from the monitor. This measures the con-

sumption of computational resources involved, as well as the times of the workloads. In partic-

11https://cs231n.github.io/neural-networks-1
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ular, the limits reached in the memory generated by the data set, the data types generated by

the model, and their training will be observed.

4. Evaluation and Results

4.1. Training Times

In this first part, the training times that both frameworks took in both architectures are

shown using both datasets and various batch size. In Tab. 3 it can be observed that increasing

the batch size significantly reduces training times but does not affect the behavior of resource

use by frameworks, as will be seen in the next section. It is important to note that by keeping

the same data set and increasing the batch size, the time differences between TensorFlow and

PyTorch were significantly reduced.

Table 3. Training times (sec)

FELIX Chifflot

TensorFlow PyTorch TensorFlow PyTorch

Batch size DT1 DT2 DT1 DT2 DT1 DT2 DT1 DT2

32 165 1591 313 3048 32 338 79 637

64 100 1026 165 1682 24 212 42 394

128 74 658 87 796 20 173 32 295

256 62 501 59 535 19 156 27 243

512 52 423 52 466 18 147 24 219

On the other hand, a significant difference can be observed in the training times of both

frameworks in which small batches are used. The main reason for this, as shown in Fig. 1

and Fig. 3, is the degree of CPU and GPU usage by each of the frameworks. TensorFlow has

maximized device memory usage and GPU usage, while PyTorch has prioritized host memory

usage with less GPU usage, behavior that has been observed in both architectures and will be

discussed in the next section.

4.2. Interrelationship of Hardware Components

The experiments have been performed for different batch sizes, but only the particular results

for batch size 32 are shown, since the results with the other batch sizes show similar behavior in

terms of the orchestration of hardware resources measured by the monitor and allows us show

the behavior studied more clearly. As mentioned in Section 2.4, two different platforms are used

to carry out the experiments in order to be able to perform a contrast regarding the use of

resources and their orchestration.

Figure 1 shows the results obtained during the model training process using the TensorFlow

framework and a batch size of 32 for the 60,000 images dataset. The vertical red lines represent

the beginning of each of the model training epochs that were set at a value of 10 for the study.

The first part shows the memory consumption of the host and the device, the second part of

the figure shows the communication of the device in its input channel (Rx) and its output

channel (Tx) through the PCIe. Finally, the third part of the figure shows the percentage of

memory consumption in both CPU and GPU. It should be noted that this third part of the graph
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shows values that may exceed values of 100% due to the current configuration of the monitor

developed. This monitor sums the percentage of each of the cores involved in the network training

process without discriminating the amount involved, which means that the servers involved in

the experiment could reach values of 4,800% or 6,400% for Chifflot and FELIX respectively.

When the datasets used in the experiment have been described, it has been commented that

their sizes have been 703 MB and 6,867 MB for DT1 and DT2 respectively. These sizes are the

space occupied by them in RAM memory when loaded in Python. The memory occupied by

the model (inputs, weights, feature maps and gradient maps) reaches a maximum of 4,446 MB

in the Host and 11,743 MB in the Device of the FELIX server and 4,880 MB in the Host and

15,621 MB on the Device of the Chifflot serve using DT1 and present little variability during the

model training time as can be seen in the first part of Fig. 1. This difference between what the

dataset occupies in memory and what it occupies together with the model shows that despite

the small convolutional model used, there is a great impact on the memory of both the host and

the device.

0 20 40 60 80 100 120 140 1600

10000

M
B

Memory  - Host Vs Device
Host
Device

0 20 40 60 80 100 120 140 1600

500

M
B

PCIe - Rx and Tx
Rx
Tx

0 20 40 60 80 100 120 140 160
Time(s)

0

100%

Utilization - CPU Vs GPU
CPU
GPU

(a) FELIX - GUANE

0 5 10 15 20 25 300

10000
M
B

Memory  - Host Vs Device
Host
Device

0 5 10 15 20 25 300

500

M
B

PCIe - Rx and Tx
Rx
Tx

0 5 10 15 20 25 30
Time(s)

0

100%

Utilization - CPU Vs GPU
CPU
GPU

(b) Chifflot - Lille

Figure 1. Interaction of hardware components - DT1 - batch -32 - TensorFlow

The second part of Fig. 1 shows the interaction of the GPU through the PCIe bus. For

both Felix and Chifflot, once the first training epoch has been initialized, a behavior with very

little variability is presented with the difference that when the use of the GPU increases, the

traffic in it increases in the same way. Finally, the third part of Fig. 1 shows the CPU and GPU

usage during model training. The most important thing to highlight is that the change in the

architecture allows the framework to make greater use of the GPU and reduce the training times

of the model, but there is not a great variability in the use of resources, they are very similar

during each epoch.

During the first training epoch fluctuating consumption of resources, as well as low values

in the data transmitted and received by the device due to the start of the neural network by

TensorFlow, are observed. Once the initial configurations are complete, the processes stabilize

and resources consumption presents similar values for each epoch with very little variability

during training time as mentioned before.

Figure 2 shows memory consumption for batches 32, 64, 128, 256 and 512 on both architec-

tures. In addition, it is shown that for the same data set and the same neural network model,

the memory consumption of the host does not present significant variations while the memory

Computational Resource Consumption in Convolutional Neural Network Training – A...

52 Supercomputing Frontiers and Innovations



0 25 50 75 100 125 150
Time(s)

0

2500

5000

7500

10000

12500

15000

17500
M

B
Memory Utilization

Host-batch=32
Host-batch=64
Host-batch=128
Host-batch=256
Host-batch=512
Device-batch=32
Device-batch=64
Device-batch=128
Device-batch=256
Device-batch=512

(a) FELIX - GUANE

0 5 10 15 20 25 30
Time(s)

0

2500

5000

7500

10000

12500

15000

17500

M
B

Memory Utilization
Host-batch=32
Host-batch=64
Host-batch=128
Host-batch=256
Host-batch=512
Device-batch=32
Device-batch=64
Device-batch=128
Device-batch=256
Device-batch=512

(b) Chifflot - Lille

Figure 2. Host and device memory consumption for each of the batches set - DT1 - TensorFlow

consumption in the device presents small fluctuations that stabilize at a baseline of consump-

tion. It should be noted that the upper part of the figure shows the memory consumption in the

host while the lower part is the consumption in the device. For each batch, the duration of the

training is different, and therefore, in the figure, it is observed how each corresponding line is

cut.
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Figure 3. Interaction of hardware components - DT1 - batch -32 - PyTorch

Figure 3 and Fig. 4 display the results for the same neural network, the same batch values

as well as the same dataset using the PyTorch framework. As for PyTorch, the maximum value

of memory consumption in the host has been 2,749 MB while in the device memory it has been

497 MB for FELIX and 3,256 MB in the host memory, and 849 MB in device memory in Chifflot

using DT1. As with Tensorflow, there are no major variations in resource consumption after the

first training period as can be seen in Fig. 1 and Fig. 3. In the same way, by increasing the use

of the GPU in Chifflot, the traffic on the PCIe bus through the RX and Tx increases.

PyTorch has large peaks in CPU usage during model initialization and at the beginning

of each training epoch, unlike Tensorflow, which tends to have more homogeneous behavior in

the use of resources. But, the use of the device by PyTorch is less for this particular case of a
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Figure 4. Host and device memory consumption for each of the batches set - DT1 - PyTorch

dataset and a small model. This differentiation of the use of the GPU is observed in Fig. 5. The

difference remains despite the change in server and therefore the architecture used in the tests.
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Figure 5. GPU Utilization - DT1 - Tensorflow vs PyTorch

Figure 6 and Fig. 7 show the memory consumption during network training for the DT2

data set using the same CNN model implemented in both frameworks. The behavior in terms

of memory use is similar despite the change in the dataset, increasing the memory requirement

for both the host and the device as expected. Regarding the behavior of the two servers with

different architectures, the training times decrease considerably with the use of more recent

architecture, but the behavior of the use of the resources remains similar despite the change in

the dataset and the architecture of the device for both frameworks.

Figure 5 showed us that Tensorflow made better use of GPU for batch size 32 and that

training times were improved by making an architecture change. Although the memory use

behavior of both frameworks is similar, as the batch and dataset size is increased using the same

model, improvements in the use of resources by PyTorch begin to show. These behaviors can be

observed in Fig. 8 and Fig. 9 where the results obtained using DT2 with a batch of size 512 are

shown. An increase in dataset size and batch size results in a significant increase in GPU usage

by PyTorch without exceeding Tensorflow’s resource handling. In the same way, the change in

architecture has improved training times but hasn’t shown differentiation in the orchestration

of resources by the frameworks.

Finally, emphasizing memory consumption by both frameworks, it is observed that both Ten-

sorFlow and PyTorch present a maximum limit of both the host and device memory, presenting
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Figure 6. Host and device memory consumption for each of the batches set - DT2 - TensorFlow
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Figure 7. Host and device memory consumption for each of the batches set - DT2 - PyTorch
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Figure 8. Interaction of hardware components - DT2 - batch 512 - Tensorflow

some fluctuations at the beginning of each training epoch. PyTorch presents an interesting fea-

ture in terms of memory usage, where batch variation incurs variations of device memory usage.

Table 4 shows the maximum memory consumption peaks by the host and the device for the
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Figure 9. Interaction of hardware components - DT2 - batch 512 - PyTorch

DT1 and DT2 datasets for both frameworks and architectures with a batch size of 32. It should

be noted that PyTorch maintains a better use of the memory of both the host and the device

at the cost of increasing the training time of the model.

Table 4. Maximum Memory Consumption (MB) -

batch-32

FELIX Chifflot

DT1 DT2 DT1 DT2

TensorFlow
Host 4446 29883 4880 30282

Device 11743 11743 15621 15621

PyTorch
Host 2749 15439 3256 15945

Device 497 497 849 849

4.3. AlexNet

This section shows the similarity of resource use and interaction by TensorFlow during

AlexNet training. The training of this model is carried out exclusively on the Chifflot server

using a batch size of 32 to measure the orchestration of the components and batches of size 32,

64, 128, and 256 are used for the study of both memory usage on the host as well as on the

device, as shown in Fig. 10.

The results presented in this section show the behavior of memory and allowed observing

the interaction of the hardware components that intervene from the beginning of the training

workload. This allowes us to observe that the computational load is established during the first

epoch of training and to see its little variability during the iterative process. In the following

section, the results of other works will be discussed and related to those obtained during this

study.
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Figure 10. Resource use by TensorFlow during AlexNet training

5. Discussion

The works presented by [5], Zhu [32] and Dai [7] show the bottleneck generated mainly

by the memory subsystem when trying to train dense models with large datasets. These last

two studies are mainly focused on resource consumption by model to high-level, but Chishti’s

work, done in a simulation environment, studies the behavior and interaction of the components

involved during training. It is limited to the interaction between the processor and memory

leaving aside accelerator devices such as the GPU. In order to solve or significantly reduce this

problem, methods have emerged such as the optimization of the directed asynchronous graph

created at the time of the execution of the model, as proposed by Le [15] and Boemer [3] or,

methods of working with sparses matrices [20] to reduce memory consumption during training

processes. They have also considered changing the way, memory levels are used during training

as mentioned in Rhu [21] and Lim [17] works but they also present bottlenecks due to the high

level of communication that occurs through the PCIe bus. In relation to the latter, new solutions

are developed on specialized servers. They use a high-speed network for communication between

throttled memory allowing to expand the memory capacity available in training by using multiple

accelerators without using the system bus as Kwon proposes [14].

Following these ideas, most of the work done to address the problem of memory limit is us-

ing methods that reduce the memory size, avoiding the problem of the limits in communication

between devices and between the same memory subsystem or the creation of new architectures

specialized in the training of deep neural network models. The biggest advantage of these solu-

tions is the implementation of sparse matrices in the training process because they can run on

conventional architectures and be highly parallel.

Therefore, this work seeks to analyze the interaction between the main hardware compo-

nents involved during training to look from another approach for bottlenecks that may occur

in this process and then be able to address new optimization approaches. The results presented

show above all the importance of finding new methods to optimize the use of the memory sub-

system, host-device communications, highlighting the variability of training times when there is

no effective communication with the accelerators. It is important to note that the traffic gener-

ated by the two communication lines of the device (Tx and Rx) is greater when there is greater

use of the memory of the device. As a result, as the memory of the device becomes saturated,

the traffic on the Rx line of the device increases, and also the traffic on the PCIe bus increases.
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These latter measurements have not been studied in-depth, but they represent an interesting

fact for the memory optimization used by CNN.

Conclusions

In this work, a characterization of the resources consumed and their interaction during the

training of a convolutional neural network has been performed using two synthetic data sets.

Batch size variability has not affected overall host or device memory consumption, and maximum

rooflines have been set from the start of the training process based on dataset size and model

complexity. On the other hand, training times, if they are affected by the batch size as observed

in Fig. 2 and Fig. 4, the fact that they consume more host memory than the device are closely

related to this variability. Finally, the monitor created to capture the resources and interaction

between them has helped show the bottleneck that can become the memory subsystem. It is

available for download.
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