
Acceleration of MPI Mechanisms for Sustainable HPC

Applications

Jesus Carretero1, Javier Garcia-Blas1, David E. Singh1, Florin Isaila1,

Alexey Lastovetsky2, Thomas Fahringer3, Radu Prodan3, Peter Zangerl3,

Christi Symeonidou4, George Bosilca5, Afshin Fassihi6, Horacio
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Ultrascale computing systems are meant to reach a growth of two or three orders of mag-

nitude of today computing systems. However, to achieve the performances required, we will need

to design and implement more sustainable solutions for ultra-scale computing systems, under-

standing sustainability in a holistic manner to address challenges as economy-of-scale, agile elastic

scalability, heterogeneity, programmability, fault resilience, energy efficiency, and scalable storage.

Some of those solutions could be provided into MPI, but other should be devised as higher level

concepts, less generalists, but adapted to applicative domains, possibly as programming patterns

or or libraries. In this paper, we show some proposals to extend MPI trying to cover major do-

mains that are relevant towards sustainability: MPI programming optimizations and programming

models, resilience, data management, and their usage from applications.

Keywords: MPI, MPI sustainability, programming models, resilience, data management, MPI

applications.

Introduction

The interest of governments, industry, and researchers in very large scale computing systems

has significantly increased in recent years, and steady growth of computing infrastructures is

expected to continue in data centers and supercomputers due to the ever-increasing data and

processing requirements of various domain applications, which are constantly pushing the com-

putational limits of current computing resources. However, it seems that we have reached a point

where system growth can no longer be addressed in an incremental way, due to the huge chal-

lenges lying ahead. In particular scalability, energy barrier, data management, programmability,

and reliability all pose serious threats to tomorrow’s cyberinfrastructure.

The idea of an Ultrascale Computing Systems (UCS), envisioned as a large-scale complex

system joining parallel and distributed computing systems that cooperate to provide solutions

to the users might be one solution to these growing problems at scale. As all the above models

rely on distributed memory systems, the Message-Passing Interface (MPI) remains a promising

paradigm to develop and deploy parallel applications, and it is already proven at larger scale —

with machines running 100K+ processes. However, can we be sure that MPI will be sustainable

in Ultrascale systems? If we understand sustainability as the probability that today’s MPI func-

tionality will be useful, available, and improved in the future, the answer is “yes”. MPI behaves

as a portability layer between the application developer and the hardware resources, hiding

most architectural details from application developers. The independence from the computing

platform has allowed new versions of MPI to include features that, when carefully combined
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with other libraries and integrated into dynamic high-level programming paradigms, permit the

development of adaptable applications and novel programming paradigms, molding themselves

to the scale of the underlying execution platform.

However, we will need to design and implement more sustainable solutions for Ultrascale

computing systems, understanding sustainability in a holistic manner to address challenges like

economy-of-scale, agile elastic scalability, heterogeneity, programmability, fault resilience, energy

efficiency, and scalable storage. Some of those solutions could be integrated and provided by MPI,

but others should be devised as higher level concepts, less general, but adapted to applicative

domains, possibly as programming patterns or libraries. In this paper, we layout some proposals

to extend MPI to cover major relevant domains in a move towards sustainability, including:

MPI programming optimizations and programming models, resilience, data management, and

their usage for applications.

The remainder of this paper is organized as follows. Section 1 covers communication opti-

mizations, while Section 2 addresses the area of resilience. Section 3 talks about storage and I/O

techniques, Section 4 deals with energy constraints, and Section 5 presents some application and

algorithm optimizations. The final section concludes the paper.

1. Enhancing MPI runtime and programming models

As the scale and complexity of systems increases, it is becoming more important to provide

MPI users with optimizations and programming models to hide this complexity, while providing

a mechanism to expose part of this information for application developers seeking knowledge of

low-level functions. One possible way to achieve automatic application optimization is to pro-

vide a layered API and allow a compiler tool to convert between MPI and this layered API, as

necessary. Another potential approach would involve more efficiently integrating new program-

ming models (e.g., OpenMP or PGAS) for cooperatively sharing not only a common high-level

goal—such as a view of the application’s time-to-completion—but all resources of the targeted

platform. In this section, we focus on some optimizations shown to enhance MPI’s scalability and

performance. These optimizations provide minimum APIs to transparently enhance portability

and sustainability of application software, thus minimizing the adaptation effort.

1.1. Distributed Region-based memory Allocation and Synchronization

Even though the existing distributed global address memory models, such as PGAS, support

global pointers, their potential efficiency is hindered by the expensive and unnecessary messages

generated by global memory accesses. In order to transfer their data among nodes, they must

either marshal and un-marshal their data during the communication, or be represented in a

non-intuitive manner.

DRASync [23] is a region-based allocator that implements a global address space abstraction

for MPI programs with pointer-based data structures. Regions are a collection of contiguous

memory spaces used for storing data. They offer great locality since similar data can be placed

together and can be easily transmitted in bulk. DRASync offers an API for creating, deleting,

and transferring such regions. It enables MPI processes to operate on a region’s data by acquiring

the containing region and releasing it at the end of computation for other processes to acquire.

Each region is combined with ownership semantics, allowing the process that created it, or one

that acquired it, to have exclusive write permissions to its data. DRASync, however, does not
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Figure 1. Scatterv and Gatherv operations on geographically distributed clusters from

Grid5000

restrain other MPI processes, that are not owners, from acquiring read-only copies of the region.

Thus, acquire/release operations are akin to reader-writer locks and enable DRASync to provide

an intuitive synchronization tool that simplifies the design of MPI applications.

DRASync has been evaluated over the Myrmics [17] allocator using two application-level

benchmarks, the Barnes-Hut N-body simulation and the Delaunay triangulation with variant

datasets. The encouraging outcome highlighted the fact that DRASync produces comparable

performance results while providing a more intuitive synchronization abstraction for program-

mers.

1.2. Optimization of MPI collectives

Algorithms for MPI collective communication operations typically translate the collective

communication pattern as a combination of point-to-point operations in an overlay topology,

mostly a tree-like structure. The traditional targets for such an algorithmic deployment are

homogeneous platforms with identical processors and communication layers. When applied to

heterogeneous platforms, these implementations may be far from optimal, mainly due to the

uneven communication capabilities of the different links in the underlying network. In [10], we

proposed to use heterogeneous communication performance models and their prediction to find

more efficient, almost optimal, communication trees for collective algorithms on heterogeneous

networks. The models take into account the heterogeneous capabilities of the underlying net-

work of computers when constructing communication trees. Model predictions are used during

the dynamic construction of communication trees either by changing the mapping of the ap-

plication processes or changing the tree structure altogether. Experiments on Grid5000 using

39 nodes geographically distributed over 5 clusters stretched over 2 sites, demonstrate that

the proposed model-based algorithms clearly outperform their non-model-based counterparts

on heterogeneous networks (see fig. 1).

1.3. MPI communication with adaptive compression

Adaptive-CoMPI [11] is an MPI extension which performs the adaptive message compres-

sion of MPI-based applications to reduce communication volume, and thus time, and enhances

application performance. It is implemented as a library connected through the Abstract Device
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Interface of MPICH so that it can be used with any MPI-based application in a transparent

manner, as the user does not need to modify the source code. Adaptive-CoMPI addresses all

types of communications, and includes different compression techniques (LZO [26] , RLE [16],

HUFFMAN [8], RICE [5] and FPC [19]) that can be used transparently to users (by means

of MPI hints).

The architecture of MPICH consists of 3 layers: Application Programmer Interface (API),

Abstract Device Interface (ADI) and Channel Interface (CI). The ADI layer is a portable layer,

while the Channel layer is not. Therefore, we have modified the ADI layer in order to include

the Runtime Compression strategy, independently of the channel and protocol used. Therefore,

applying Runtime Compression strategy on point-to-point routines, not only compresses these

communications, but also the collective ones. The same is true for blocking and non-blocking

communication.

Algorithm 1 Blocking message send

len-buffer = contig-size count

if(len > 2048)

algorithm-compress ← Read-Hint-User()

len-compress ← Compression-Message(buff, len, algorithm-compress, buff-compress)

Send-Message-contiguous(buff-compress, len-compress, src-rank, dest-rank)

end if

Algorithm 2 Blocking message reception

Check if data is compressed

if(check-request == 1)

flag-head = Study-Head-of-Buffer(request.buf)

if(flag-head == yes-compression)

Decompress the buffer

buf ← Decompression-Message(request.buf)

else

Copy(request.buf → buf)

end if

end if

For all messages sent, a header is included to inform the receiver process if it has to decom-

press the message or not, and which algorithm must be used.

Adaptive-CoMPI includes two possible compression strategies. The first one, called Run-

time Adaptive Strategy (RAS) analyzes the performance of the communication network and the

efficiency of different compression algorithms before the application execution. Based on this

information, during the application execution, it decides if it is worth it to compress a message

or not, and if so, it chooses the most appropriate compression algorithm. This feature allows

the Runtime Adaptive Strategy to offer adaptive compression capabilities without any previous

knowledge of the application characteristics. RAS decision process consists of the following steps:

1. Selecting the best compression algorithm at the beginning of the application and everytime

the data type changes.

2. Finding the minimum size of the message from which the performance improves.
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3. Sending the message (compressed or not).

4. For subsequent messages with the same datatype, the process compares the message size

with length − yes − compression. If the size of the message is higher, then the message is

sent compressed, and uncompressed otherwise.

5. Once the message is sent, and if the decision is to compress, the process checks if the

compression-ratio is less than one. In the number of mistakes is higher than a certain thresh-

old within a time interval, the compression is disabled (see fig. 2a).

6. In the other case, if the decision was uncompressed, the process updates the number of

messages that have been sent uncompressed. When the number is higher than a reevaluation

threshold, then the evaluation is restarted (see fig. 2b).
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Figure 2. Adaptive-CoMPI with RAS strategy. Learning from errors.

One of the main characteristics of RAS is that it can adapt itself to the applications behavior

at runtime. This strategy learns from previous messages which is the compression algorithm to

be used and the size from which it obtains a benefit by compressing data.

The second approach, called Guided Strategy, provides an application-tailored solution based

on the prior application analysis using the application profiling. With this approach along the

first execution of the MPI application all the messages are stored in a log file. Upon completion,

the best compression algorithm is determined off-line for each message and it is registered in a

decision rules file. When the application is executed again with the same input parameters and

in the same environment, Adaptive-CoMPI extracts the information from the decision rules file

and applies the most appropriate compression technique for each message.

Adaptive-CoMPI has been evaluated using real applications (BIPS3D, PSRG, and STEM),

as well as using the NAS benchmarks. Fig. 3 shows the speedup achieved by BIPS3D when

Adaptive-CoMPI techniques are applied. The benchmark has been executed running up to 256

processes in a cluster with dual-core nodes. As may be seen, using Adaptive-CoMPI provides

always a performance increase, to a maximum of 1.8 speedup with the same resources.

Fig. 4 shows the speedup achieved for each strategy compared to the execution of the

application without compression. Note that the Guided Strategy finds the best compression

technique (including no compressing) for each message, providing the optimal compression rate

for each independent message. We can observe that the Runtime Adaptive Strategy obtains a

performance similar to the guided one which means that, globally speaking, it is able to efficiently

compress the messages with no previous knowledge of the application.
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Figure 3. Speedup of Adaptive-CoMPI for the

BIPS3D application
Figure 4. Comparing RAS and

Guided-Strategy

2. Resilience

Should the number of components in supercomputers continue to increase, the mean time

between failures (MTBF) is expected to decrease to a handful of hours, preventing any capacity

application from succesfully delivering its scientific outcome. As a result, deploying fault tolerant

strategies within HPC software stack will not only become critically important, but it will have

a direct and lasting impact: a massive improvement in application runtime and efficient resource

usage compared to currently deployed techniques used to alleviate the consequence of failures

(that is, resubmission of failed jobs, and simplistic periodic checkpointing to disk). However,

system level checkpoint/restart is unable, in its current state, to cope with very adversarial future

failure patterns. This presents a clear need to improve checkpointing strategies by simultaneously

addressing several issues: 1) optimizing the checkpoint procedure by minimizing the storage

requirements and by diverging from centralized I/O strategies; and 2) allowing independent

restart of failed processes without rollback of all processes [4]. One should understand that

adopting such a solution allows the application to complete under a reasonable time interval,

but in exchange requires significant investment in reliable hardware (more memory or NVRAM,

increased reliable storage and so on). Thus, the relief is only temporary, as the increase in the

number of components in the checkpoint restart chain will, by definition, have an impact on

the MTBF. Moreover, the total ownership cost of the application will increase, as all these

hardware additions will increase the energy requirements for large platforms, a requirement

extremely difficult to satisfy at the Exascale level.

Thus, the first potential solution is to simultaneously address two of the major drawbacks of

the system-level coordinated checkpoint, by decreasing not only the checkpoint size by also it’s

frequency. Such solutions have been thriving recently, proposing different interface to address

this problem. As an example, in Fault Tolerant Messaging Interface (FMI) [22] employs a surviv-

able communication runtime coupled with a fast, in-memory C/R and dynamic host allocation

to enable low-latency recovery. The application developer highlights the critical data for the

correct execution of the application, as well as windows of opportunity for a correct checkpoint,

allowing the FMI runtime to decide the frequency and the amount of data to be checkpointed.

On a somehow similar approach, Fault Tolerance Interface (FTI) [1] proposes to address these

challenges by proposing a low-overhead high-frequency multi-level checkpoint approach, in which

a highly-reliable topology-aware Reed-Salomon encoding is integrated deep inside the checkpoint

scheme. A more data centric approach, named Containment Domain (CD) [7] proposes a pro-

gramming construct that enable applications to express resilience needs and to interact with
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the system to tune and specialize error detection, state preservation and restoration. They be-

have as weak transactional primitives and can be nested to take advantage of the machine and

application hierarchies allowing hierarchical state preservation, restoration and recovery.

Faithful to their coordinated checkpoint/restart roots, these approaches inherit from a for-

mer programming period, where synchronous SPMD and BSD application were ruling the par-

allel application world. They are based on synchronous concepts, forcing a strict coordination

not only during the checkpoint, but also during the restart (in addition to requiring a complete

restart and a full data recovery). They provide little flexibility to the application to implement

specialized fault management approaches, or to take advantage of algorithmic properties in order

to code with the faults. Moreover, they do not provide support in the programming paradigm

for fault detection without a drastic restart, nor to any kind of support from the message passing

substrate.

However, over the last years, algorithm based fault tolerant techniques have proven to be

capable to forgo checkpointing completely by employing a tailored, scalable protective strategy

to maintain sufficient algorithm-specific redundancy to restore lost data pieces due to failures

without a global need for restart. Moreover, a large number of application can cope with a lesser

support for fault management from the runtime. Domain decomposition, naturally fault tolerant

applications, and master-worker, in which the partial loss of the dataset is not a catastrophic

event that commands interrupting progress toward the solution, are just a few examples of

such resilient applications. All of these recovery patterns hit one of the historic roadblocks that

have hindered the deployment of fault tolerant software: the lack of proper support from the

popular communication libraries, MPI and PGAS, which thereby limits recovery options to

full-job restart upon failure.

Resiliency should refer not only to the ability of the MPI application to be restarted after

a failure, but also to the ability to survive failures and to recover to a consistent state from

which the execution can be resumed. In recent developments, the MPI Forum has proposed an

extension of the MPI standard that permits restoring the capability of MPI to communicate

after failures strike [2]. One of the most strenuous challenges is to ensure that no MPI operation

stalls from the consequences of failures, as fault tolerance is impossible if the application cannot

regain full control of the execution. In the proposed standard, an error is returned when a failure

prevents a communication from completing. However, it indicates only the local status of the

operation, and does not permit assuming if, nor how, the associated failure has impacted MPI

operations at other ranks. This design choice avoids expensive consensus synchronizations from

obtruding into MPI routines, but leaves open the danger of some processes proceeding unaware

of the failure. This novel proposal is a low level layer, basically the most basic portability layer,

that can be exposed at the communication infrastructure level, to allow for flexible and portable

higher level concepts, but adapted to specific applicative domains. Thus, these additions propose

to put the resolution of such situations under the control of the application programmer, by

providing supplementary interfaces that reconstruct a consistent global view of the application

state (typical case for applications with collective communications). Aside from applications,

these new interfaces can be used by high-level abstractions, such as FMI, FTI, CS, transactional

fault tolerance, uncoordinated checkpoint-restart, and programming languages, to implement

their own needs and to provide seamless support for advanced fault tolerance models that are

thereby portable between MPI implementations.

Acceleration of MPI Mechanisms for Sustainable HPC Applications

34 Supercomputing Frontiers and Innovations



3. Data and Input/Output

Data storage and management is a major concern for Ultrascale systems, as the increased

scale of the systems and the data demand from the applications lead to major I/O overheads

that are actually hampering the performance of the applications themselves. MPI has proposed

asynchronous I/O operations to allow overlapping I/O and computation, but this feature does

not reduce the latency of the system, which is inherent in the length of the I/O path. To this

end, there is a major trend towards increasing data locality to avoid data movements: the

data-centric paradigm.

In this sense, AHPIOS (Ad-Hoc Parallel I/O system for MPI applications) [14] proposes a

scalable parallel I/O system completely implemented in MPI. AHPIOS allows MPI applications

to dynamically manage and scale distributed partitions in a convenient way. The configuration

of both MPI-IO and the storage management system is unified and allows for a tight integration

of the optimizations of all layers. AHPIOS partitions are elastic as they conveniently scale up

and down with the number of resources. AHPIOS proposes two collective I/O strategies, which

leverage a two-tiered cooperative cache in order to exploit the spatial locality of data-intensive

parallel applications. The file access latency is hidden from the applications through an asyn-

chronous data staging strategy. The two-tiered cooperative cache scales with both the number of

processors and storage resources. The first cooperative cache tier runs along with the application

processes and hence scales with the number of application processes. The second cooperative

cache tier runs at the I/O servers and, therefore, scales with the number of global storage de-

vices. Finally, AHPIOS takes advantage of view-based I/O [3] is a file-system independent I/O

optimization based on file views. View-based I/O avoids the necessity of transferring large lists

of offset-length pairs at file access time as the present implementation of two-phase I/O.

Given an MPI application accessing files through the MPI-IO interface and a set of dis-

tributed storage resources, AHPIOS constructs a distributed partition on demand, which can be

accessed transparently and efficiently. Files stored in one AHPIOS partition are transparently

striped over storage resources, each partition being managed by a set of storage servers run-

ning together as an independent MPI application. Access to an AHPIOS partition is performed

through an MPI-IO interface, allowing it to scale up and down on demand during run-time.
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Figure 5. AHPIOS. BTIO class C measurements. ROMIO two-phase I/O over PVFS2, Lustre,

AHPIOS and the two AHPIOS-based solutions: server-directed I/O and client-directed I/O

The performance and scalability of AHPIOS for an MPI application that writes and reads in

parallel, disjoint, contiguous regions of a file, stored over an AHPIOS system for different num-

bers of AHPIOS servers, has been demonstrated on both commodity clusters and BlueGene/P

J. Carretero, J. Garcia-Blas, D.E. Singh, F. Isaila, A. Lastovetsky, T. Fahringer...

2015, Vol. 2, No. 2 35



supercomputers. We have evaluated the performance of file writes of the BTIO benchmark

for four different setups: two-phase I/O over the IBM solution (CIOD), AHPIOS without cache

and view-based I/O as collectives (VBIO), AHPIOS and view-based I/O with client-side caching

(VBIO-CS), and AHPIOS with view-based I/O with both client-side and I/O node-side caching

(VBIO-CS-IONS). Fig. 5 shows the total time breakdown into compute time, file write time, and

close time, for BTIO class B and C. The close time is relevant because all data is flushed to the

file system when the file is closed. We notice that in all solutions the compute time is roughly the

same. VBIO reduces the file write time without any asynchronous transfers. VBIO-CS reduces

both the write time and close time, as data is asynchronously written from compute node to

I/O node. For VBIO-CS-IONS, the network and I/O activity are almost entirely overlapped

with computation. We conclude that the performance of file writes gradually improves with the

increasing degree of asynchrony in the system.

4. Energy

Energy has become a major concern for the sustainability of future computer architectures.

Providing MPI applications with malleable and energy-aware capabilities allows executing them

more efficiently and with less energy requirements, as shown in this section.

Intel SandyBridge chips include the Running Average Power Limit (RAPL) interface that

provides an energy estimation based on hardware monitoring. Other manufacturers like AMD,

IBM and NVIDIA include similar interfaces in their products. We access to this information

(via PAPI [24]) to evaluate the application power consumption. Fig. 6 shows the aggregated

processor power of Jacobi and Conjugate Gradient running on a compute node consisting of two

6-core Intel Xeon E5-2620 processors. We can observe that the energy consumption is different

for each application given that they have different compute and memory intensity levels. There

is a sharp increase of power until 12 processes because the available resources (cores) in the

system. From 12 to 24 processes the power (and performance) still slightly increase leveraging

the processor hyper-threading capabilities.
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with two Intel Xeon E5-2620 processors
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FLEX-MPI [18] is an MPI extension which provides performance-aware dynamic reconfig-

uration capabilities to MPI applications. In addition, FLEX-MPI considers two different con-

straints: cost and energy. The cost constraint consists of reaching a given level of application

performance (in FLOPs) at the smallest operational cost (measured in $ per CPU time). In the

case of the energy constraint, we aim to reach the performance level with the smallest aggre-

gated energy cost (in Joules) among all the processors involved in the application execution.

Note that there are important differences between both constraints. For instance, the opera-

tional cost is usually constant for a given processor class, but the energy cost is strongly related

to the processor load (as fig. 6 shows).

FlexMPI addresses heterogeneous architectures where each class of nodes has different en-

ergy, cost and performance specifications. Finding a solution to the aforementioned problems is

usually non trivial given the existing trade-offs between performance and costs (both economic

and energetic). For reaching these objectives, we employ a computational prediction model that

takes into account both the application and platform characteristics. This model uses hardware

counters to characterize the processor power for the considered program under different load

scenarios. Later, during the program execution FLEX-MPI uses the PAPI library to survey

hardware events (like energy and FLOPS) of each MPI process, and of the MPI interface, to

collect the performance of the MPI communications. Based on the collected data, it decides to

spawn or remove processes in order to achieve the user-defined performance objectives. In case

of a spawn operation, Flex-MPI decides which compute nodes are the most appropriate to run

the new created processes. In addition, when the number of processes changes, Flex-MPI also

includes functionalities for performing the data redistribution, thereby guaranteeing appropriate

load balance among the processes.
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Figure 7. Number of processes and type of processors scheduled by Flex-MPI for a

performance improvement objective of 30% and Jacobi benchmark with 20K input matrix

The results are encouraging, as was demonstrated by executing Jacobi method with two

different matrix sizes (10K and 20K rows and columns) and performance improvement objective

of 30%. We consider two scenarios for FlexMPI: the first one tries to reach the performance

objective without any constraint. The second scenario combines the performance objective with

the energy constraint. In our experiments we used a heterogeneous platform with four classes

of Intel Xeon nodes: E52620, E5645, E74807 and E5405. The average GFLOP/Watt ratio per

core values are respectively 0.13, 0.16, 0.24, and 0.32. Note that the last node is the most
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energy-efficient one. Unfortunately, some compute nodes are not Sandy Bridge and it is not

possible to measure the energy by hardware counters. For them, we indirectly obtained the

energy under different loads by means of an empirical model based on Intel Xeon E5410 [21]

and the extrapolation of the values obtained for E5-2620 node.

In our experiments, all the executions with Flex-MPI reached the performance improve-

ment objectives. The reference version (without Flex-MPI) runs two application processes in

each compute node type (summarizing 8 processes). For the 10K and 20K matrices the ref-

erence version produced an accumulated energy of 30.3 and 120.3 KJoules, respectively. For

the efficiency objective (without constraints), the energy values are respectively 31.1 and 124.8

KJoules. For the efficiency objective with energy constraint the energy values are respectively

28.5 and 109.3 KJoules. As fig. 7 shows with an energy efficiency goal, Flex-MPI schedules more

dynamic processes on the nodes which have a better performance/energy ratio. In this method,

the overall operational energy cost is minimized keeping the performance objectives. This result

demonstrates that the combined use of low-level monitoring and malleability at runtime would

be a good option for achieving energy efficiency in MPI systems.

5. Applications and algorithms optimizations

As a library, MPI lacks knowledge about the expected behavior of the whole application, the

so called“global-view programming model,” which prevents certain optimizations that would be

possible otherwise. In this section, we show some optimizations that are effective at the global

level, and are thus proposed for the application level.

5.1. Hierarchical SUMMA

Figure 8. Communication time of SUMMA, block-cyclic SUMMA and HSUMMA on BG/P.

p =16K, n = 65,536.

MPI collectives are very important building blocks for many scientific applications. In partic-

ular, MPI broadcast is used in many parallel linear algebra kernels such as matrix multiplication,

LU factorization, and so on. The state-of-the-art broadcast algorithms used in the most popu-

lar MPI implementations were designed in mid 1990s with relatively small parallel systems in

mind. Since then, the number of cores in high-end HPC systems has increased by three orders

of magnitude and is going to further increase as the systems approach Ultrascale. While some
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platform-specific algorithms were proposed later on, they do not address the issue of scale, as

they try to optimize the traditional general-purpose algorithms for different specific network ar-

chitectures and topologies. The first attempt to address the issue of scale is made in [13], where

the authors challenge the traditional “flat” design of collective communication patterns in the

context of SUMMA, the state-of-the-art parallel matrix multiplication algorithm. They trans-

form SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement

of processors. They theoretically prove that the transformed Hierarchical SUMMA (HSUMMA)

can significantly outperform SUMMA on large-scale platforms. Their experiments on 16K cores

have demonstrated almost a 6x improvement in communication cost, which translated into more

than 2-fold speedup of HSUMMA over SUMMA (see fig. 8). Moreover, the optimization tech-

nique developed is not architecture or topology specific. While the authors aim to minimize the

total communication cost of this application rather than the cost of the individual broadcasts,

it has become evident that, despite being developed in the context of a particular application,

the resulting technique is not application-bound, ensuring sustainability.

5.2. Application-level optimization of MPI applications with Compiler

Support

Programming in MPI requires the programmer to write code from the point-of-view of a

single processor/thread, an approach known as fragmented programming. One limiting factor

for optimizing MPI is the fact that it is a pure library approach and thus only effective during

the execution of the application. A lot of effort has been put into improving the performance

of individual functions offered by MPI implementations in order to speed up the execution of

MPI applications. These optimizations cannot be performed at the application level because

the structure of the underlying program cannot be analyzed or changed by the MPI library in

any way. On the other hand, normal compilers have no knowledge about the semantics of MPI

function calls either, and thus have to treat them like black boxes—just like all library calls.

A compiler which is aware of the semantics of MPI function semantics could (at least to some

extent) analyze the behavior of a program along with its communication pattern, in order to

optimize both.

We intend to optimize MPI applications by integrating MPI support in the Insieme compiler

project [15]. The Insieme compiler framework enables the analysis of a given parallel application

and applies source-to-source transformations to improve the overall performance. The output

code of the compiler is intended to run within the Insieme runtime system, which provides

basic communication primitives optimized for performance. The combination of a compiler and

runtime system enables us to transform the program at compile time and also pass information

about the program structure to the runtime system for further optimizations during program

execution.

Optimizing message passing programs using specialized compilers has already been done long

before MPI even existed. Moving communication calls within the code and replacing blocking

with non-blocking communication can improve the communication/computation overlap and

thus reduce the program execution time. Our approach should go one step further than previous

MPI-aware compilers by analyzing high level patterns to find further optimization potential. An

example illustrating such a pattern is depicted in the code of Algorithm 3.

An MPI-aware compiler could change the second call from MPI Bcast to MPI Ibcast, and

thus send B asynchronously while the application is processing the data transmitted during
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Algorithm 3 Example pattern for MPI Bcast

MPI Bcast(A, count, MPI INT, 0, MPI COMM WORLD);

for (int i = 0; i < count; i++) {
// process A

}
MPI Bcast(B, count, MPI INT, 0, MPI COMM WORLD);

// process B similarly

the first broadcast, A. Additionally, our compiler can detect that, under some constraints, it

would be beneficial to combine both broadcast operations into a single operation to reduce the

communication overhead for small messages. Similarly, for larger messages it might decide to

break down the message transfers into smaller chunks which will then be processed individually,

creating a pipelined broadcast at the application level, as shown below. Transformations like

these require program analysis in a compiler and simply cannot be done with a pure library

approach.

Algorithm 4 Example pattern for optimized MPI Bcast

for (offset = 0; offset < count; offset += tile size) {
MPI Bcast(&A[offset], tile size, MPI INT, 0, MPI COMM WORLD);

for (i = offset; i < offset + tile size; i++) {
// process tile of A

}
}
//process remainder of A and do the same for B

5.3. Hybrid MPI-OpenMP Implementations

A hybrid programming solution might be implemented using OpenMP and MPI. Such ap-

proaches become more important on modern multi-core parallel systems, decreasing unnecessary

communications between processes running on the same node, as well as, decreasing the mem-

ory consumption, and improving the load balance. With this implementation, both levels of

parallelism, distributed and shared-memory, can be exploited. On one hand, the block-level

parallelism is matched by the parallelism between nodes in the cluster (the data is distributed

by using MPI). We mention below some of the most representative and efficient Hybrid MPI-

OpenMP Implementations.

Molecular Dynamics using DL POLY : DL POLY, a large scale Molecular Dynamics (MD)

application programmed using MPI was modified to add a layer of shared memory threading [6],

and the code was tested on two multi-core clusters. At smaller core numbers on both systems

the pure MPI code outperformed the hybrid message passing and shared memory code. The

slower performance of the hybrid code at low core numbers was due to the extra overheads

from the shared memory implementation, and the lack of any significant benefit from a reduced

communication profile. For more cores on both systems, the hybrid code delivered better per-

formance. In general the hybrid code spent less time carrying out communication than the pure

MPI code, performing better at point to point communication at all core counts, and collec-
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tive communication at higher core counts. This reduced communication was the main driver for

performance improvements in the hybrid code. At low core counts the added overheads from

OpenMP parallelization reduced the hybrid code performance, but the effects of these overheads

decreased as the number of cores increased. The choice of system interconnect had an effect on

the performance of the hybrid code when compared to the pure MPI code. Using a fast Infini-

band interconnect the pure MPI code outperformed the hybrid up to a larger number of cores

than when using a slower 10 GigE interconnect.

Molecular Dynamics using LAMMPS : Pal et al. [20] developed a computational scheme for

MD simulations that exploited thread-parallelism as well as message passing techniques and

implemented it on a cluster of 6 dual-quad-core blade servers (SMP nodes), connected using

Infiniband and were the challenges and issues of such schemes were discussed in detail. They

showed that such a coupled scheme could work nearly twice as fast as a pure message-passing

based implementation for certain system sizes, owing to the additional overheads in the latter

being circumvented by the former scheme. When using unthreaded MPI processes with this al-

gorithm, the speed-up obtained saturated quickly on the cluster, well before the total number of

available cores were utilized. A set of hybrid schemes were compared and were found to be com-

petitive. The authors state that certain code-optimizations and computational loads may favor

one particular scheme over the other and hence it is unwise to treat a particular scheme as the

best processorthread configuration. However, they found that using unthreaded MPI processes

was likely to be inefficient as compared to threaded processes. LAMMPS, which does not spawn

threads for parallelization, was found to achieve a speed-up that was significantly inferior to that

obtained by their hybrid algorithm. However, the algorithm used for the parallelization was not

optimal, and its performance can be enhanced further. There is room for further improvements

in the serial algorithm as well.

Adaptive Integral Method : Wei et al [25] presented a hybrid MPI/OpenMP parallelization

technique for improving the scalability of classical adaptive integral method (AIM) accelerated

classical iterative method of moments (MOM) solvers on multi-core clusters. The schemes they

used were based on nested decompositions; a nested column-row decomposition was used for the

classical MOM computations and a nested 1-D slab decomposition of the 3-D auxiliary regular

grid was used for the AIM acceleration. The scalability of the resulting methods matrix fill time,

memory requirement, and matrix solve time were examined theoretically and contrasted to that

of a pure MPI parallelization. It was shown that when pure MPI parallelization was used on

multi-core clusters, the scalability of both classical and AIM accelerated MOM were limited by

two factors: (i) the memory needed for storing replicated geometry/basis function data, and (ii)

the communications during the iterative matrix solution. The hybrid MPI/OpenMP paralleliza-

tion was shown to be useful for both limitations because it did not replicate non-parallelized data

structures among different cores of a processor making the memory requirement independent of

the number of active cores and because it used fewer messages to communicate larger chunks

of data among processors and reduced the impact of latency. For classical MOM, for which

the matrix solution can be latency or bandwidth limited, hybrid MPI/OpenMP parallelization

always alleviated both of the limiting factors effectively. For AIM accelerated MOM, for which

the matrix solution can be grid or latency limited, hybrid MPI/OpenMP parallelization always

alleviated the memory limitation but could alleviate the communication limitation only when

the matrix solution was latency limited. They concluded that as the performance improvements

are a function of the number of active cores in a processor, hybrid parallelization methods are
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expected to become more important as the general trend of increasing number of cores in multi-

and many-core processors continues.

Drug Discovery : Guerrero et al [12] developed a hybrid optimized version for Virtual Screen-

ing calculations in Drug Discovery, that reached up to a 229x speed-up factor, versus its sequen-

tial counterpart. On their implementation, threads cooperated in parallel to perform the calcu-

lations within each node in a vectorized fashion. Once the data had been distributed using MPI,

the calculation of the energy was performed on each node with OpenMP, using its own memory

and executing as many threads as the number of cores per node. Moreover, the communication

and computation could be overlapped by asynchronous send/receive instructions. Next, MPI

was used to move molecule related data between nodes, instead of sending all the information to

each core. The communication was reduced by a ratio of number of cores per node, with respect

to the MPI implementation. This hybrid distributed memory system exhibited good scalability

with the number of processors, which is explained by the low number of communications re-

quired by the simulations in their hybrid MPI-OpenMP implementation. These hybrid solutions

are adequate when the Virtual Screening kernels are computationally intensive and massively

parallel in nature, and thus they are well suited to be accelerated on parallel architectures. A

natural evolution can also be made with many-core systems located on each node.

Topological Analysis: Cui et al [9] discussed a hybrid MPI/OpenMP approach to implement

a parallel processing of topological operations. They showed that implementing an OpenMP

application is simpler and quicker than implementing an MPI application. In order to obtain

speedup curves for the parallel scheme, they conducted within and overlap operations on a PC

cluster. In the first experiment, China County-level Point Data and China County-level Polygon

Data were used. In the second experiment, soil type map and land use map in Heilongjiang and

Jilin province were used. Experimental performance results demonstrated that a mixed mode

code, with the MPI parallelization occurring across the nodes and OpenMP parallelization within

the nodes, was more efficient on a cluster as the mode matches the architecture more closely

than a pure MPI model.

Conclusions

The MPI design and its different implementations have proven to be a critical piece of the

roadmap to faster and more scalable parallel applications. Based on it’s past successes, MPI will

probably remain a major paradigm for programming distributed memory systems. However, in

order to maintain a consistent degree of performance and portability, the revolutionary changes

we witness at the hardware level must be mirrored at the software level. Thus, the MPI standard

must be in a continuous state of re-examination and re-factoring, to better bridge high-level

software constructs with the low-level hardware capability. As software researchers, we need to

highlight and explore innovative and even potentially disruptive concepts and match them to

alternative, faster, and more scalable algorithms.

In this paper, we have called attention to some MPI-level optimizations that are amenable

to providing sustainable support to parallel applications. Hybrid programming models allow

developers to use MPI as the upper level distribution mechanism, thus reducing the volume of

communication and the memory needed. Adaptive compression allows developers to reduce MPI

communications and storage overhead, while AHPIOS is aimed at increasing data locality and

reducing I/O latency. Most of the proposals made are transparent to applications or can be made

transparent through compiler support. Many more optimizations are possible for applications
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that rely on MPI to evolve better programming models, resilience, data management, and energy

efficiency mechanisms to reduce overhead, while creating evolving applications. Some of these

mechanisms, like RMA, non-blocking, and neighborhood collectives, are introduced in the new

MPI 3.0 standard, but the road to Ultrascale is still unpaved.

The work presented in this paper was partially supported by EU under the COST programme

Action IC1305, ’Network for Sustainable Ultrascale Computing (NESUS)’.
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