
Early evaluation of direct large-scale InfiniBand networks with

adaptive routing

Alexander N. Daryin12, Anton A. Korzh3

c© The Author 2014. This paper is published with open access at SuperFri.org

We assess the problem of choosing optimal direct topology for InfiniBand networks in terms

of performance. Newest topologies like Dragonfly, Flattened butterfly and Slim Fly are considered,

as well as standard Tori and Hypercubes. We consider some reasonable extensions to InfiniBand

hardware which could be implemented by vendors easily and may allow reasonable routing algo-

rithms for such topologies. A number of routing algorithms are proposed and compared for various

traffic patterns. Mapping algorithms for Dragonfly and Flattened Butterfly are proposed. Based on

this research it has been decided to use Flattened Butterfly topology for system #22 in November

2014 Top 500 list.

Keywords: adaptive routing, InfiniBand, high-radix topology, network simulation.

Introduction

InfiniBand is a de facto industry standard in supercomputing with almost 45% entries on

the latest Top 500 list [1]. However, the largest systems on the list tend to have custom intercon-

nection networks, with only 2 of Top 10 systems built using InfiniBand. A possible explanation

of this fact is that large number of nodes drives the need for modern cost-effective topologies

such as Dragonfly and Flattened Butterfly that are not readily supported in current InfiniBand

infrastructure. Moreover, these topologies in turn require advanced routing algorithms, including

adaptive routing, that cannot be implemented within InfiniBand specification.

The purpose of this paper is to investigate possible performance of large InfiniBand networks

given that some extra features are added to the switches.

1. Topologies

We compare topologies and routing algorithm on the following reference configuration. Net-

work contains n = 2,048 switches with concentration C = 8, thus 16,384 nodes. Each switch

has d = 36 ports, 8 of those taken by nodes and 28 are available for inter-switch connections.

Hardware is assembled in 32 twin racks of 64 switches (512 nodes) each. Hence it is desirable to

exploit local connections in groups of 16, 32, or 64 switches to reduce cabling cost. Only direct

topologies are considered. Number of switches is fixed to maintain roughly the same cost for

different topologies.

Theoretical upper bound [16] on the relative bisection bandwidth β is d−2
2C + o(1) ≈ 162,5%.

Practically constructible graphs with greatest known bisection are Ramanujan graphs [22] with

lower bound on bisection d−2
√
d−1

2C for d = q + 1 where q is a prime power. For q = 25 this

yields a 100% relative bisection. However, such graphs are available in a very few sizes and have

intractable structure for designing routing algorithm on them. Therefore we assume that a 50%

relative bisection bandwidth obtained on several topologies is a reasonable value.

1T-Platforms, Moscow, Russia
2National Research University – Higher School of Economics, Moscow, Russia
3Micron Technology, Inc., Boise, USA

DOI: 10.14529/jsfi140303

56 Supercomputing Frontiers and Innovations



1.1. Tori

A torus is a Cartesian product of cycles. Up to 4D tori may be supported in InfiniBand. For

higher dimensions it is impossible to provide deadlock freedom of minimal routing. Torus-2QoS,

a routing engine for tori in the Open Subnet Manager (OpenSM), only supports 2D and 3D tori.

We shall use the following notation both for tori and for FlatFly later: N is the number of

dimensions; Kn is the size of dimension n; Ln is the width of links within dimension n.

The relative bisection of a torus is then β = min{4Ln/CKn} over n = 1, N , its degree is

d = C + 2
∑

n Ln. A combinatorial search yields the following two options with the greatest

possible bisection:

Dimension Size Link Widths Degree Diameter Bisection

3D 8× 16× 16 3, 5, 5 34 20 15,6%

4D 4× 8× 8× 8 2, 4, 4, 4 36 14 25,0%

Cayley graphs of commutative groups are a well known alternative of tori, having a similar

cabling structure and routing algorithms, but much smaller diameter and greater bisection

bandwidth. We do not consider such topologies explicitly, but e.g. a FlatFly is a Cayley graph

of a product of cyclic groups with appropriate generators; Dragonfly is a vertex-transitive graph

and thus has a structure similar to that of a Cayley graph of a non-commutative group.

1.2. FlatFly

Consider a Cartesian product of N full graphs. Historically, several names were used for this

topology:

• Generalized Hypercube [5] (this term implies single inter-switch links and one adapter per

switch);

• Flattened Butterfly [14] (implying single inter-switch links, and equals orders of full graphs

equal to concentration);

• HyperX [3] (subsumes both previous cases).

We shall refer to this topology as FlatFly (FF) and use the same notation as for tori: Kn

for orders of full graphs and Ln for link width in each of them, n = 1, N . According to [3],

the relative bisection bandwidth of the FlatFly network is β = min{KnLn}/2C. Diameter of a

FlatFly is equal to its dimension N , and degree is equal to C +
∑

n Ln(Kn − 1).

Parameters of optimal FlatFly network are determined by a combinatorial search procedure

outlined in [3]. For our setup this is a 4D FlatFly with dimensions 4× 8× 8× 8 and link widths

2, 1, 1, 1. It’s diameter is 4, radix is 35, and relative bisection is 50%.

Cabling of this network is relatively easy. A 8 × 8 part (3rd and 4th dimensions) occupies

a twin rack. Then each rack is connected to 3 racks in the first dimension with bundles of 128

cables, and to 7 racks in the second dimension with bundles of 64 cables.

FlatFly may serve as a building block for other topologies. For example, groups in Dragonfly

topology are usually connected as a full graph (which is a 1D FlatFly), or a 2D FlatFly [9].

1.3. Hypercube

A hypercube is a Cartesian product of 2-vertex complete graphs, and may be considered

a particular case of both torus and FlatFly. Unlike tori, dimension of hypercube built with

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 57



InfiniBand is only limited by the number of nodes in subnet (which in practice means a maximum

of 14D). However, as a FlatFly it usually is not optimal in terms of bisection bandwidth and

diameter.

In our setup, hypercube is 11D with double links in each dimension. This gives diameter 11,

relative bisection 25%, and radix 30. The remaining 6 ports may be utilized to increase bisection

bandwidth within one rack to 37,5%.

1.4. Dragonfly

A Dragonfly [15] consists of groups connected as full graphs (with “local” links). These

groups, regarded as vertices, are again connected as a full graph (with “global” links).

Denote by K the size of a group, and by G the number of global links per switch. Then there

are KG groups containing K2G switches4. A typical shortest path crosses one “global” and two

“local” full graphs, hence the relative bisection is β = min{K/4C,G/2C}. Graph diameter is 3,

and degree is C +G+K − 1.

It is reasonable to choose K and G such that K/4C = G/2C, which gives K = 16 and

G = 8 for our setup. The radix is 30. Unlike other considered topologies, cabling of global links

in a Dragonfly is really messy.

1.5. Slim Fly

A Slim Fly [4] topology is built with McKay–Miller–Širáň (MMS) graphs [20] parameterized

by a prime power q. Its 2q2 vertices are elements of linear space Z2×Fq×Fq, where Fq is a field

of order q. Coordinates of vertices are denoted as (t, x, y). There are two kinds of edges:

1. y-edges: (t, x, y0) is connected with (t, x, y1) iff y1 − y0 ∈ Xt. For q = 2p, the sets Xt are

X0 = {1, ξ2, ξ4, . . . , ξq−2} and X1 = {ξ, ξ3, . . . , ξq−1}, where ξ is a primitive element of Fq.

2. t-edges: (0, x0, y0) is connected with (1, x1, y1) iff y0 = x0x1 + y1.

Diameter of a MMS graph is 2. For q = 2p its radix is C + 3Lq/2, and we hypothesize that

its relative bisection is β = Lq/2C. Here L is link width.

Unfortunately, an MMS graph with 2,048 switches corresponds to q = 32 and requires

switches of radix 56. Instead of that, we will consider Cartesian products of Slim Fly and

FlatFly. There are two options for our setup:

Slim Fly q L FlatFly Kn Ln Degree Diameter Bisection

SF×FF-1 4 2 8× 8 1, 1 34 4 50%

SF×FF-2 8 1 16 1 35 3 50%

SF×FF-1 replaces 4 × 8 dimensions of our FlatFly setup with a Slim Fly. This further

simplifies cabling: now each twin rack is connected to 6 other racks using bundles of 128 cables.

Also, it saves 1,024 optical cables.

SF×FF-2 has the same radix as FlatFly, but a lower diameter of 3, and groups of 16 switches

have relative bisection 100%.

4Actually there are KG + 1 groups and (KG + 1)K switches, but we allow for a small irregularity in topology

omitting one global link per group, for the total number of switches to be a power of 2.

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

58 Supercomputing Frontiers and Innovations



2. Mapping algorithms

Some routing algorithms assume that the structure of a subnet is given in advance, and that

all switches have their coordinates assigned. This may not be always the case in practice. For

example, in OpenSM a routing engine is given only a list of nodes and links, and has to recover

network structure on its own.

Here we present mapping algorithms for FlatFly and Dragonfly.

2.1. Mapping a FlatFly

To map a FlatFly, we construct an equivalence relation ε on the set of its links, using the

following rules.

1. Two uni-directional links e1 and e2 constituting one bi-directional link are equivalent: e1εe2.

2. Two parallel links e1 and e2 connecting the same two switches are equivalent: e1εe2.

3. Three links e1, e2, e3 forming a rectangle are equivalent: e1εe2, e2εe3.

4. If four links e1, . . . , e4 form a rectangle, then the opposite sides of this rectangle are equiv-

alent: e1εe3, e2εe4.

The total number of traversed edges here is at most nd2.

The rules above do not define the entire relation ε; we need to compute their transitive

closure. This may be done efficiently using the Union-Find algorithm from [25] with O(n lnn)

operations.

Each equivalence class Di of ε corresponds to a dimension of FlatFly, i = 1, N . Using ε, we

then assign coordinates to switches. Additional N equivalence relations εi are constructed using

the following rule. If edge e connects vertices v1 and v2, and e ∈ Di, then v1εjv2 for all j 6= i.

After calculating the transitive closure, each equivalence class Cij of εi corresponds to a single

value of i-th coordinate, j = 1,Ki.

The described algorithm can be applied to incomplete topologies. Experiments on our setup

have shown that FlatFly is still mapped correctly if 20% switches and 15% links are missing at

random. Hypercube is mapped correctly with 15% missing switches and 10% missing links.

2.2. Mapping a Dragonfly

For Dragonfly mapping, we construct the same equivalence relation ε as for FlatFly. Each

equivalence class of ε containing more than one edge represents local links of one Dragonfly

group. All other links are global links.

In our setup, incomplete Dragonfly is mapped correctly with 40% switches and 10% links

missing at random.

3. Routing

InfiniBand [2] fabric is a packet-switching network. Each network device is assigned a subnet

address called Local Identifier (LID). Each link has several Virtual Lanes (VL) used by the

routing engine to provide deadlock freedom and quality of service. The route of each packet from

source to destination is determined by two header fields set at the source node: Destination LID

(DLID) and Service Level (SL).

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 59



LID is a 16-bit integer, but the actual address capacity is 48K since 16K addresses are used

for multicast groups. SL takes values from 0 to 15. There may be 1, 2, 4, 8, or 15 VLs per link;

a common value for modern hardware is 8 VLs.

There are four mechanisms constituting an InfiniBand routing function:

1. Each switch has a Linear Forwarding Table (LFT) that maps DLIDs into output ports.

2. After selecting the output port, switch consults an SL2VL Table to select output VL de-

pending on input port, output port and SL.

3. Before sending a packet, the source node requests a Path Record from the subnet manager,

to find out which SL should be used for these source and destination nodes.

4. LID Mask Control (LMC) feature allows assigning more than one LID per node. This results

in several paths between the same two nodes that may be used for load balancing or other

purposes.

In theory [8], one may consider routing functions in a very general form

(Source,Destination,Switch, In Port, In VC)→ (Out Port,Out VC).

InfiniBand factors this dependence into





(Source,Destination)→ (DLID,SL),

(Switch,DLID)→ Out Port,

(Switch,SL, In Port,Out Port)→ Out VL.

In particular, the VL chosen does not directly depend on the destination, which limits the choices

in the design of deadlock-free routing algorithms.

3.1. Adaptive routing

InfiniBand specification [2] does not support Adaptive Routing (AR). Moreover, a number of

measures has been taken to ensure that packets arrive in order. On the other hand, it is always

possible to find a traffic pattern on which a particular static routing will achieve only a small

portion of the available bisection bandwidth [11]. For example, in our setup if 8 nodes on one

switch communicate with 8 nodes on a neighbor switch using any minimal routing, they will

only get 12,5% bandwidth, even if relative bisection is 50,%.

A number of strategies have been proposed to implement AR in InfiniBand. Multipath

routing uses LMC and congestion notification mechanism to select a least-congested path at the

source [18]. A possible modification to switch hardware [19] would treat all LIDs assigned to the

same node interchangeably and dynamically choose output port from LFT entries corresponding

to them. Finally, Mellanox claims support of AR in its switches [21].

Here we assume that switch hardware is modified in such a way that for each destination

it is possible to specify a set of output ports instead of a single port. This allows implementing

a minimal adaptive routing. However, although it may perform better on some traffic patterns,

many other patterns will not benefit from adaptivity if only one shortest path is available between

a pair of nodes (which is exactly the case in our example with 8 collocated nodes talking to nodes

on a neighbor switch). Furthermore, a fully adaptive minimal routing will in general have credit

loops that cannot be eliminated using standard InfiniBand features.

The key problem in designing non-minimal adaptive routing algorithms for InfiniBand is

that no information is accumulated in packet header as a packet traverses the fabric. The only

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

60 Supercomputing Frontiers and Innovations



header field not covered by the Invariant CRC is VL. However, input VL does not influence

neither output port nor output VL. Thus, it is hard, if possible, for a non-minimal routing to

guarantee progress towards destination and to avoid livelocks.

Since VL is the only header field that can change from hop to hop, we assume the following

modifications to the switch hardware:

1. Output VL is selected using input VL: either it is simply incremented (so called VL hopping),

or input VL is used instead of SL in the SL2VL mechanism (so that it becomes VL2VL).

2. There is a separate forwarding table for each input VL5.

With these modifications, the routing function is now described as





(Source,Destination)→ (DLID,VL),

(Switch, In VL,DLID)→ {Out Port1, . . . ,Out Portk},
(Switch, In VL, In Port,Out Port)→ Out VL.

To reduce latency, it is beneficial to prefer shorter routes when possible. This is not part

of a routing, but of a selection function that chooses one port from a set based on congestion

information. In our simulation we assume that two priorities are available: high priority for

minimal paths and low priority for non-minimal. An exception is deflection routing requiring

three levels of priority.

We finally note that using AR also requires significant changes to software (including MPI)

to properly handle out-of- order packets. This is beyond the scope of this article.

3.2. Torus routing

A deadlock-free routing for tori usually uses two virtual channels to prevent cycles within a

dimension6: one for packets crossing a dateline in that dimension, another for all other packets.

To avoid cycles between dimensions, they are traversed in a fixed order, hence the name Direction

Order Routing (DOR).

It turns out that dateline crossing at each dimension should be determined at the source

node and stored in SL (because VL cannot be chosen per destination address). Since SL has 4

bits, the maximum dimension of InfiniBand tori is 4D.

Summing up, adaptive routing for tori can be only used to select one of the parallel output

links.

3.3. FlatFly routing

DOR routing can be applied to FlatFly. Unlike tori, there is no need to use two VLs since

a packet traverses at most one link in each dimension.

Adaptive DOR (ADOR) allows an additional hop in each dimension [9, 26]. This is imple-

mented by the following rules:

1. VL 0 is used when input port belongs to a host or to a different dimension than output

port.

2. VL 1 is used if input and output ports belong to the same dimension.

5Some routing algorithms require a separate forwarding table for each input VL and each input port.
6Limitations of InfiniBand routing preclude using other deadlock-avoidance schemes such as turn-based routing.

VL hopping is also not an option since the diameter of torus network is larger than the number of available VLs.

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 61



3. Packet with input VL 0 is routed to all switches in current dimension, preferring the shortest

route.

4. Packet with input VL 1 is routed in current dimension along the shortest route.

DOR and ADOR do not use a large portion of crossbar (all transitions from higher to lower

dimensions). Mixed DOR uses the remaining two bits of VL to make possible several orderings

of dimensions.

1. At the source node, SL is set of d mod 4, where d is the index of the destination host within

the destination switch.

2. Based on SL, one of the four dimension orders are used7: (1, 2, 3, 4), (2, 4, 1, 3), (3, 1, 4, 2),

(4, 3, 2, 1).

Mixed ADOR combines Mixed DOR and ADOR and chooses VL as either 2SL (for hops in

dimension order) or 2SL+ 1 (for extra hops in the same dimension).

Another pitfall of (A)DOR is that all packets with the same source and destination switches

will meet at the intermediate switches. Twisted DOR solves this problem by making an oblig-

atory non-minimal hop at the beginning. Assume that we are at the switch with coordinates

(x1, . . . , xn) and d is the index of the destination host.

1. If a packet comes from a host8, route it to switch with coordinates (x1, . . . , d mod Kn)

using VL 1 (if d = xn mod Kn, do nothing).

2. After that, proceed with DOR using VL 0.

Twisted ADOR is a combination of Twisted DOR and ADOR, with the exception that no

additional hop is allowed in the last dimension (since it has been already made at the first step).

Finally, Twisted Mixed DOR combines Twisted and Mixed DORs, and the same goes for

Twisted Mixed ADOR.

3.4. Hypercube routing

As hypercube is a particular case of a FlatFly, we can apply the latter’s DOR and Mixed

DOR routing algorithms. With only two switches per dimension, ADOR is the same as DOR

here. Also, “Twisted” routings did not perform well on simulator, so we don’t use them either.

There are special AR algorithms for hypercubes, e.g. described in [10]. We have simulate

three of them:

1. Negative First : route adaptively in all negative dimensions (those where coordinate of source

is 1 and that of destination is 0), then route adaptively in all other dimensions.

2. All but one (ABO) Negative First : route adaptively in all negative dimensions except di-

mension 1, then route adaptively in all other dimensions.

3. All but one (ABO) Positive Last : route adaptively in all negative dimension and dimension

1, then route adaptively in all other dimensions.

3.5. Dragonfly routing

Although Dragonfly features low diameter and high relative bisection, advanced routing

techniques are required to achieve appropriate network throughput. Indeed, any two groups are

connected with only one link, and if all hosts in the first group happen to communicate with all

7These permutations where found using integer linear programming minimizing the maximum load on each part

of the crossbar.
8This algorithm requires selection of forwarding table depending on input port .

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

62 Supercomputing Frontiers and Innovations



hosts in the second one sharing the same link, the resulting throughput will be 1/KC, which is

less than 1% for our setup.

A popular Dragonfly routing UGAL is based on a scheme proposed by Valiant [27]: most

packets are first routed to a randomly chosen intermediate group, and only then to the desti-

nation. However, there is no hardware support for Valiant-type routings in InfiniBand, so it is

impossible to implement UGAL together with RDMA.

The basic Static routing for Dragonfly is9:

1. in source group, make a local hop to the node that has a link to the destination group;

2. make a global hop;

3. in destination group, make a local hop to the destination switch.

Here we use a family of adaptive routing algorithms that use only local congestion informa-

tion. They are coded by a combination of letters G, S, I, and D, each allowing extra non-minimal

hops of different kinds:

G: extra global hop is allowed (leading to an intermediate group);

S: extra local hop is allowed in the source group;

I: extra local hop is allowed in the intermediate group;

D: extra local hop is allowed in the destination group.

At most 8 total hops are possible. Up to 6 VLs are required: VLs 0 and 1 are used in the source

group, 2 and 3 in the intermediate group, 4 and 5 in the destination group. Higher priority is

assigned to minimal routes.

3.6. SlimFly and SF×FF routing

Here we describe the structure of the minimal routing in Slim Fly. Consider the following

cases when routing a packet from (ts, xs, ys) to (td, xd, yd).

1. ts = td = t, xs = xd = x. Then either ys − yd ∈ Xt, or there exists yi ∈ Fq such that

ys−yi ∈ Xt and yi−yd ∈ Xt (by construction of Xt). Depending on that, the shortest route

is either “y” or “yy” (encoded by the link types). Note that it cannot be one of “ty” or “yt”

since ts = td. Also it cannot be “tt” as will be seen below.

2. ts = td = t, xs 6= xd. Since y-links do not change x, the only possible option is the “tt”

route. Denote by (ti, xi, yi) the intermediate vertex, ti = 1− t. Then10 if t = 0,




ys = xsxi + yi;

yd = xdxi + yi
=⇒




xi = (ys − yd)/(xs − xd),

yi = ys − xsxi.
(1)

If t = 1, 


yi = xsxi + ys;

yi = xdxi + yd
=⇒




xi = −(ys − yd)/(xs − xd),

yi = ys + xsxi.
(2)

Note that these systems are not solvable if xs = xd. All arithmetic is in the field Fq. Relations

(1) and (2) may be unified as




xi = (−1)t(ys − yd)/(xs − xd),

yi = ys + (−1)txsxi.

9Note that this routing is not minimal, as some shortest paths consist of two global hops.
10All arithmetic here is in Fq.

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 63



3. ts 6= td. If (td − ts)(ys − yd) = xsxd, then the shortest route is the corresponding t-link.

Otherwise it should be either “ty” or “yt”.

(a) “ty”. The intermediate node is (td, xd, yi), and then

ys − yi = (td − ts)xsxd =⇒ yi = ys − (td − ts)xsxd.

given that yi − yd ∈ Xtd .

(b) “yt”. The intermediate node is (ts, xs, yi), and then

yi − yd = (td − ts)xsxd =⇒ yi = yd + (td − ts)xsxd.

given that ys − yi ∈ Xts .

At least one of two cases should hold since the diameter of MMS graph is 2.

As seen from the minimal routing analysis, the number of shortest paths between (ts, xs, ys)

and (td, xd, yd) is

• 1 or 2 if ts 6= td (but the case of 1 is encountered more often);

• exactly one of ts = ts, xs 6= xd;

• usually multiple if ts = td, xs = xd.

Experiments show that most source-destination pairs only have 1 shortest path between them.

To avoid deadlocks, on two-hop paths VL 0 is used on the first hop and VL 1 on the second.

This may be implemented using standard SL2VL feature: if a packet comes from a host, select

VL 0, otherwise select VL 1.

DOR, ADOR and their Mixed and Twisted variants may be used for SF×FF products,

considering Slim Fly as a dimension of a Flat Fly.

3.7. Topology agnostic algorithms

There exists a number of static generic routing algorithms for InfiniBand: UpDn [17], DF-

SSSP [7], LASH [23]. Achieving deadlock freedom for an arbitrary topology is challenging, and

mentioned algorithms do not provide such a guarantee.

Under our assumptions, VL hopping may be used to provide deadlock freedom. Indeed, no

credit loops are possible if VLs are used in strictly increasing order. This works when maximum

path length does not exceed the number of available VLs. In our setup, we can use VL hopping

for FlatFly, Dragonfly and SF×FF.

We use a family of algorithms that we call Distance Based Routing. Its parameters are E –

the number of extra hops allowed, and F – the flag indicating whether deflection is permitted.

Suppose that shortest distance between source and destination switches is D > 0, and the

remaining distance at current switch is d > 0.

1. Source host assigns VL = D + E mod 8 to the packet.

2. On each hop, VL is decremented mod 8.

3. For each output port p leading to a switch, calculate distance from that switch to the

destination switch, dp.

(a) If d > dp, route to p with high priority (shortest path).

(b) If d = dp ≤ VLout, route to p with medium priority (routing sideways).

(c) If d < dp ≤ VLout and F is set, route to p with low priority (deflection).

In these terms, fully adaptive minimal routing corresponds to E = 0 and is called Distance

Based. Non-minimal routing (E > 0) without deflection is denoted as Distance Based + E.

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

64 Supercomputing Frontiers and Innovations



Finally, routing with deflection is denoted Deflection + E. In the latter case E ≥ 2, otherwise

enabling deflection makes no sense.

4. Simulation results

In this section, we compare performance of described topologies and routing algorithms. For

large-scale networks, we have developed a parallel event-driven simulator following methodology

described in [6]. It has been verified against BookSim and real-world data and produces consistent

results.

The following table contains relative saturation bandwidth [6] for each topology, routing

algorithm and traffic pattern. Since network size is a power of two, we use bit patterns for com-

parison: complement, reverse, rotation, shuffle, and transpose. There is also uniform (random

all-to-all) pattern.

Bit

Routing Uniform Cmpl Rvrs Rotn Shuf Trns

Torus

DOR 3D 26,5% 15,6% 7,6% 7,0% 7,6% 7,1%

DOR 4D 48,2% 25,0% 2,9% 17,0% 12,2% 2,9%

FlatFly

DOR 81,3% 11,7% 1,6% 12,5% 7,8% 2,3%

Mixed DOR 89,8% 11,7% 5,5% 7,8% 5,5% 2,3%

Twisted DOR 24,2% 11,7% 11,7% 11,7% 12,5% 5,5%

Twisted Mixed DOR 46,9% 12,5% 11,7% 9,0% 10,9% 2,3%

ADOR 52,3% 50,0% 3,1% 25,0% 24,2% 2,3%

Mixed ADOR 56,3% 50,0% 10,2% 24,2% 24,2% 5,5%

Twisted ADOR 24,2% 50,0% 21,1% 24,2% 24,2% 11,7%

Twisted Mixed ADOR 53,1% 28,1% 22,7% 24,2% 24,2% 5,5%

Distance Based 93,8% 11,7% 9,4% 11,7% 9,4% 10,2%

Distance Based +1 95,3% 11,7% 14,8% 24,2% 24,2% 24,2%

Distance Based +2 94,5% 24,2% 14,8% 24,2% 24,2% 24,2%

Distance Based +3 95,3% 24,2% 15,6% 39,8% 24,2% 24,2%

Distance Based +4 96,1% 50,8% 14,8% 39,8% 37,5% 37,5%

Deflection +2 96,1% 24,2% 24,2% 24,2% 24,2% 24,2%

Deflection +3 94,5% 24,2% 24,2% 50,0% 24,2% 24,2%

Deflection +4 94,5% 50,8% 24,2% 50,0% 24,2% 24,2%

Hypercube

DOR 24,2% 24,2% 0,8% 24,2% 11,7% 0,8%

Mixed DOR 24,2% 24,2% 2,3% 11,7% 11,7% 0,8%

Negative First 2,3% 0,0% 0,8% 0,8% 0,8% 0,8%

ABO Negative First 5,5% 0,0% 0,8% 0,8% 0,8% 0,8%

ABO Positive Last 5,5% 0,0% 0,8% 0,8% 0,8% 0,8%

Dragonfly

Static 24,2% 5,5% 5,5% 5,5% 5,5% 5,5%

S 64,8% 0,0% 11,7% 0,8% 0,8% 9,4%

D 68,8% 0,0% 11,7% 0,8% 0,8% 10,9%

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 65



Bit

Routing Uniform Cmpl Rvrs Rotn Shuf Trns

SD 50,8% 0,0% 11,7% 0,8% 0,8% 11,7%

G 11,7% 5,5% 5,5% 5,5% 5,5% 5,5%

GS 11,7% 5,5% 11,7% 5,5% 5,5% 9,4%

GI 11,7% 11,7% 5,5% 10,9% 11,7% 5,5%

GD 11,7% 11,7% 5,5% 11,7% 21,9% 5,5%

GSI 22,7% 11,7% 5,5% 10,9% 11,7% 5,5%

GID 11,7% 46,9% 5,5% 24,2% 24,2% 5,5%

GSD 11,7% 11,7% 11,7% 11,7% 11,7% 10,9%

GSID 23,4% 24,2% 5,5% 24,2% 24,2% 5,5%

Distance Based 82,0% 0,0% 5,5% 0,8% 0,8% 5,5%

Distance Based +1 61,7% 0,8% 10,9% 0,8% 2,3% 11,7%

Distance Based +2 59,4% 0,8% 11,7% 2,3% 2,3% 9,4%

Distance Based +3 50,0% 0,8% 11,7% 2,3% 2,3% 10,9%

Distance Based +4 24,2% 2,3% 11,7% 2,3% 2,3% 10,9%

Deflection +2 57,0% 0,8% 5,5% 2,3% 2,3% 9,4%

Deflection +3 48,4% 2,3% 11,7% 2,3% 5,5% 11,7%

Deflection +4 24,2% 2,3% 11,7% 5,5% 5,5% 11,7%

SF×FF-1

Distance Based 80,5% 11,7% 11,7% 10,9% 5,5% 9,4%

Distance Based +1 80,5% 11,7% 39,1% 11,7% 14,8% 11,7%

Distance Based +2 80,5% 19,5% 30,5% 11,7% 11,7% 11,7%

Distance Based +3 80,5% 19,5% 30,5% 11,7% 11,7% 11,7%

Distance Based +4 80,5% 19,5% 30,5% 11,7% 11,7% 11,7%

Deflection +2 82,0% 11,7% 24,2% 23,4% 21,9% 24,2%

Deflection +3 81,2% 19,5% 24,2% 24,2% 24,2% 32,8%

Deflection +4 80,5% 21,9% 24,2% 24,2% 24,2% 32,8%

SF×FF-2

Distance Based 61,7% 5,5% 5,5% 5,5% 5,5% 5,5%

Distance Based +1 61,7% 11,7% 14,8% 7,0% 7,0% 7,0%

Distance Based +2 61,7% 11,7% 14,8% 7,0% 7,0% 8,6%

Distance Based +3 61,7% 11,7% 17,2% 7,0% 7,0% 8,6%

Distance Based +4 71,9% 11,7% 17,2% 7,0% 7,0% 7,0%

Deflection +2 61,7% 10,2% 11,7% 11,7% 10,9% 11,7%

Deflection +3 61,7% 11,7% 24,2% 11,7% 11,7% 23,4%

Deflection +4 74,2% 11,7% 18,8% 11,7% 10,9% 11,7%

As expected, tori and hypercube perform worse than other topologies on uniform traffic due

to lower relative bandwidth.

For FlatFly, the best routing is “Distance Based +4”. Comparing its results with “Distance

Based +3” and ADOR family, we conclude that the optimal number of extra hop is equal to di-

mension of FlatFly, and it’s critical that these hops are made without particular dimension order.

Deflection helps to achieve full bisection bandwidth on some patterns, but reduces bandwidth

for others.

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

66 Supercomputing Frontiers and Innovations



Hypercube shows low performance on bit reverse and bit transpose patterns. Turn model

routings (negative first/ positive last) perform really badly, as they create significant imbalance

in packet distribution across the network.

Results for Dragonfly are mixed, with GID and GSD routings showing best results for bit

traffic patterns and low performance on uniform traffic at the same time. Distance based and

deflection routings perform worse than our specialized algorithms.

Results for SF×FF-1 are better than for SF×FF-2. Deflection helps to break the 12,5%

barrier on three traffic patterns, with “Deflection +4” showing the best results for almost all

traffic patterns.

Comparing different topologies, FlatFly and SF×FF-1 seem to be the winners, according to

the following criteria

1. performance on uniform traffic;

2. performance of best routing on bit traffic patterns;

3. performance of “Distance Based” routing11;

5. Related work

A performance comparison of various types of interconnects is given in [13]. In [28, 29]

authors analyze and simulate adaptive routing in InbiniBand fat trees. Improving performance

of large-scale InfiniBand networks through optimized task placement is subject of [24]. DFSSSP

routing [7, 12] optimizes InfiniBand fabric performance by statically balancing network paths.

6. Conclusions

In this paper, we have analyzed possible topologies for large-scale InfiniBand systems (in-

cluding tori, hypercube, Dragonfly, Flattened Butterfly, Slim Fly). In most cases, adaptive rout-

ing is required in order to achieve theoretical bandwidth limits. We analyze standard InfiniBand

routing and list a minimum set of features that should be added in order to support adaptive

routing. We describe specialized adaptive routing algorithms for each topology, and a family of

topology-agnostic (distance-based) routings. Then we provide simulation results for considered

topologies and routing algorithms. Best performance results are shown by Flattened Butterfly

and a combination of Flattened Butterfly and Slim Fly.

This work has been partially supported by the Russian Ministry of Education and Science

(project # 14.579.21.0074).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. November 2014 TOP500 list (http://top500.org/lists/2014/11/).

2. InfiniBandTM Architecture Specification, volume 1. IBTA, 2007.

11Results for “Distance Based” routing give an upper bound for any static minimal routing. Similarly, results for

DOR and Mixed DOR give an upper bound for static DOR-based algorithms.

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 67



3. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber. HyperX: topology,

routing, and packaging of efficient large-scale networks. In Proceedings of SC’09. IEEE, Nov

2009.

4. M. Besta and T. Hoefler. Slim Fly: A cost effective low-diameter network topology. In

Proceedings of SC’14, pages 348–359. IEEE, Nov 2014.

5. L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus structures for a

computer network. IEEE Transactions on Computers, 33(4):323–333, Apr 1984.

6. W. J. Dally and B. P. Towles. Principles and Practices of Interconnection Networks. Elsevier

Science, 2003.

7. J. Domke, T. Hoefler, and W. E. Nagel. Deadlock-free oblivious routing for arbitrary topolo-

gies. In Proceedings of IPDPS-11, pages 616–627. IEEE, May 2011.

8. J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks. Elsevier Science, 2002.

9. G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kop-

nick, M. Higgins, and J. Reinhard. Cray Cascade: a scalable HPC system based on a

Dragonfly network. In Proceedings of SC’12, pages 1–9. IEEE, Nov 2012.

10. C. J. Glass and L. M. Ni. The turn model for adaptive routing. Journal of the ACM,

41(5):874–902, Sep 1994.

11. T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage switches are not crossbars: Effects

of static routing in high-performance networks. In Proceedings of CLUSTER 2008, pages

116–125. IEEE, Sep 2008.

12. T. Hoefler, T. Schneider, and A. Lumsdaine. Optimized routing for large-scale infiniband

networks. In Proceedings of HOTI’09, pages 103–111, Aug 2009.

13. D. J. Kerbyson, K. J. Barker, A. Vishnu, and A. Hoisie. A performance comparison of

current HPC systems: Blue Gene/Q, Cray XE6 and InfiniBand systems. Future Generation

Computer Systems, 30:291–304, Jan 2014.

14. J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient topology for high-radix

networks. In Proceedings of ISCA’07, number 13, pages 126–137. ACM, May 2007.

15. J. Kim, W. J. Dally, S. L. Scott, and D. Abts. Cost-efficient Dragonfly topology for large-

scale systems. IEEE Micro, 29(1):33–40, 2008.

16. A. V. Kostochka and L. S. Melnikov. On bounds of the bisection width of cubic graphs. In

J. Nesetril and M. Fiedler, editors, Proceedings of the Fourth Czechoslovakian Symposium

on Combinatorics, Graphs and Complexity, volume 51 of Annals of Discrete Mathematics,

pages 151–154. Elsevier, 1992.

17. P. Lopez, J. Flich, and J. Duato. Deadlock-free routing in InfiniBandTM through destination

renaming. In Proceedings of ICPP-01, pages 427–434. IEEE, Sep 2001.

18. D. F. Lugones, D. Franco, and E. Luque. Dynamic routing balancing on infiniband network.

Journal of Computer Science & Technology, 8(2):104–110, Jul 2008.

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

68 Supercomputing Frontiers and Innovations



19. J. C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato. Supporting fully adaptive

routing in InfiniBand networks. In Proceedings of IPDPS-03. IEEE, Apr 2003.

20. B. D. McKay, M. Miller, and J. Širáň. A note on large graphs of diameter two and given

maximum degree. Journal of Combinatorial Theory, Series B, 74(1):110–118, Sep 1998.

21. Mellanox Technologies. SwitchX product brief (http://www.mellanox.com/

related-docs/prod_silicon/SwitchX_VPI.pdf).

22. M. Morgenstern. Existence and explicit constructions of q + 1 regular Ramanujan graphs

for every prime power q. Journal of Combinatorial Theory, Series B, 62(1):44–62, Sep 1994.

23. T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (LASH) routing in irregular system

area networks. In Proceedings of IPDPS-02, pages 162–169, Apr 2002.

24. H. Subramoni, S. Potluri, K. C. Kandalla, B. Barth, J. Vienne, J. Keasler, K. Tomko,

K. Schulz, A. Moody, and D. K. Panda. Design of a scalable InfiniBand topology service

to enable network-topology-aware placement of processes. In Proceedings of SC’12. IEEE,

Nov 2012.

25. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,

22(2):215–225, Apr 1975.

26. A. Thamarakuzhi and J. A. Chandy. 2-dilated flattened butterfly: A nonblocking switching

topology for high-radix networks. Computer Communications, 34(15):1822–1835, Sep 2011.

27. L. G. Valiant. A scheme for fast parallel communication. SIAM journal on computing,

11(2):350–361, May 1982.

28. E. Zahavi, I. Keslassy, and A. Kolodny. Distributed adaptive routing for big-data applica-

tions running on data center networks. In Proceedings of ANCS’12, pages 99–110. ACM,

2012.

29. E. Zahavi, I. Keslassy, and A. Kolodny. Distributed Adaptive Routing Convergence to Non-

Blocking DCN Routing Assignments, volume 32, pages 88–101. Jan 2014.

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 69


