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This review starts with outlining how science and technology evaluated from last century into

high throughput science and technology in modern era due to the Nobel-Prize-level inventions of

combinatorial chemistry, polymerase chain reaction, and high-throughput screening. The evolu-

tion results in big data accumulated in life sciences and the fields of drug discovery. The big data

demands for supercomputing in biology and medicine, although the computing complexity is still

a grand challenge for sophisticated biosystems in drug design in this supercomputing era. In or-

der to resolve the real-world issues, artificial intelligence algorithms (specifically machine learning

approaches) were introduced, and have demonstrated the power in discovering structure-activity

relations hidden in big biochemical data. Particularly, this review summarizes on how people mod-

ernize the conventional machine learning algorithms by combing non-numeric pattern recognition

and deep learning algorithms, and successfully resolved drug design and high throughput screening

issues. The review ends with the perspectives on computational opportunities and challenges in

drug discovery by introducing new drug design principles and modeling the process of packing

DNA with histones in micrometer scale space, an example of how a macrocosm object gets into

microcosm world.
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1. Big Data and Supercomputing Challenges in Drug Discovery

In the last century, three cutting-edge inventions, which were combinatorial chemistry (CC),

polymerase chain reaction (PCR), and high-throughput screening (HTS), significantly changed

biomedical science and technology. CC was invented by Robert Bruce Merrifield who won 1984

Nobel Prize for Solid Synthesis [26], and made high throughput syntheses (a method for scientific

experimentation using robotics, data processing/control software, liquid handling devices, and

sensitive detectors allows a researcher to quickly make millions of chemicals for biological tests)

become possible [19]. PCR was invented by Kary Banks Mullis who won 1993 Nobel Prize [31],

and expedited human gene project. HTS was invented by Donald J. Cram, Jean-Marie Lehn

and Charles J. Pedersen, who jointly won 1987 Nobel Prize in chemistry for their development

and use of molecules with structure-specific interactions of high selectivity. HTS significantly

accelerated screening huge number of compounds against biological targets. These inventions

trigged high throughput science and technology and revolutionized pharmaceutical discovery

and development. Because people now can make chemical compounds, biopolymers and validate

their biological properties in high throughput manner. Consequently, human being is facing big

data and supercomputing challenges in modern time.

Drug discovery and development involve in the following major processes: molecular design,

biological or chemical syntheses, molecular structural elucidations and pharmaceutical analyses,

pharmaceutical target identification and validation, drug screening, preclinic experiments and

clinic trials, pharmacokinetics (PK) and pharmacodynamics (PD) analyses, disease diagnoses,

and clinic drug applications. Each process involves instrumental measurements that result in

big data. These data are not only “big” (volume from GB to PB), but stored in many different

formats (variety) and required prompt analyses (velocity).
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There are mainly four sources contributing to the big data in drug discovery:

1. High throughput experiments. High throughput syntheses can generate many data

describing molecular structures and properties and high throughput screening campaigns can

generate many data regarding the relations of the compounds and their biological targets.

2. Health information / office automation. These resources contain patients informa-

tion regarding demographic, administrative, health status / risks, medical history, current

management of health conditions, and outcomes data.

3. Scientific publications, patents, and databases. Publications in life sciences grow

rapidly. PubMed collects more than 30 million biomedical articles from more than 7,000 jour-

nals; by August 2020, American Chemical Abstracts (ACS) collects more than 100 mil-

lionth compound, 64 million gene sequences. The number of US patent applications

reaches 15394762 since 1963. Databases ChEMBL, PubChem, ChemSpider, ZINC, and

SureChEMBL collect 2, 90, 63, 980, and 17 million compounds [34]. These data cannot

been utilized or digested without computational or artificial intelligence approaches.

4. Simulations. Along with the increasing computing power, we can simulate greater and

more complicated biological systems. Taking molecular dynamics simulation as examples,

each nanosecond simulated conformational trajectories resulted in 2 GB data averagely; it

would generate millions of conformations (∼ 2 TB data) for micro-second time scale.

These big data bring in following challenges:

1. Data storage. Petabyte (1015 bytes) of digital information relies on cloud storage; chemical

and biological data annotation/curation and quality assurance are challenging.

2. Visualization. Small molecules or biopolymers are described in graphs per se. These objects

are usually converted into numbers (descriptors). Thus, a molecule is defined as a point in

multi-dimensional space that requires dimension reduction approaches (such as principal

component analysis (PCA), and nonlinear dimensionality reduction techniques), metadata

generation techniques.

3. Data mining. Based on the high dimensional data, scientists are facing classifica-

tion problems. Molecules are classified into two or more clusters corresponding to their

phenotypes. Moreover, people need to understand the relations between the key fac-

tors/features/chemotypes and a specific phenotype(s). The real challenges are (a) the rela-

tions between the features and phenotypes are not of classical analytic function relations;

(b) the features for an entire molecule are not related to its phenotypic property in the

most of situation; (c) the local feature(s)/substructure(s) for an molecule can be the key to

a phenotypic property, but there are uncountable ways to partition a molecular structure

into substructures. That is why so may data mining tools have been developed (such as

clustering algorithms, decision trees, supporting vector machines (SVM), artificial neural

networks (ANN).

4. Computational complexity. The most precise theory to study a molecular system is

quantum chemistry. However, the computational complexity of different quantum chemistry

algorithms is so difficult that even a quantum computer will be unable to solve [38]. When

we deal with a huge number of molecules interacting a protein, the situations are worse.

To identify drug targets for a drug lead, multisequence alignment techniques are required.

The computational complexity of sequence alignment algorithms ranges from O(m ∗ n) to

O(n2) [5]. To identify privileged substructures responsible for a biological activity, sub-
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structure match algorithms are applied. The computing complexity of these algorithms are

usually polynomial [39].

Traditional drug discovery did not generate big data, however, modern instrumentation

and automation changed the situations. With micro-chip technology, people can collect in vivo

data from model animals 24 hours a day to monitor a drug action in sito. New drug discovery

technologies such as Surface Plasmon Resonance (SPR, measuring protein-ligand affinity with

optics) [18], Isothermal titration calorimetry (ITC, measuring protein-ligand affinity with en-

tropy and enthalpy) [29], and Saturation Transfer Difference NMR spectroscopy (STD-NMR,

measuring protein-ligand affinity with nuclear magnetic resonance) [27] allow us to acquire un-

precedent protein-ligand interaction data. Omicses (such as Pharmaco-proteomics, Pharmaco-

metabonomics), High performance computing, and cloud technologies are indispensable compo-

nents for modern drug discovery service platform (Fig. 1).

Figure 1. Drug discovery service platform with HPC and cloud storage

There are millions of available compounds from vendors and billions of virtual compounds for

virtual screening. For a structure-based virtual screening approach (such as molecular docking),

billions of conformations have to be enumerated for millions molecular structures requiring

petabytes (PB) storage. If the docking results were validated by 50 ns MD simulations, each

ligand-protein complex would need ∼ 25 GB space.

To constantly monitor the pharmaceutical efficacy of a compound in vivo, 2–3 months

continuous administration will result in 3.5 PB physiological and pharmacological data, from

which the efficacy, dosage, and toxicity can be determined.

Constantly monitoring cell changes (such as the effect of drugs on cell activity, the drug

distribution, the alter cell behavior, proliferation or apoptosis) while cells incubated with a

compound will result in 1 PB data for tracking 10 traits in 1000 cells for 24-hours.

Drug discovery processes involve in the data derived from patients to various devices in

many different formats; these data require different search engines and approaches to retrieve

and elucidate; and eventually result in personal diagnosis and treatment scenarios (Fig. 2).

Intrinsically, modern drug discovery is to discover macrocosmic solutions by simulation mi-

crocosmic phenomena with many experimental data. Therefore, this is a multi-scales simulation
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Figure 2. Data, search engine and mining tools involved in drug discovery process

process, which covers time scale (from femto-seconds to hours/days), space scale (from nano-

meters to meters) at changing resolutions (from electron orbitals to molecular machines) and

various theories/methods (from density function theory to biopolymer physics) [11].

Therefore, the computing complexity in drug discovery is due to the complexity of the

molecular systems. In many cases, the computing complexity issue can be reduced by parallel

computing technology (aka high-performance computing) if the problem is parallelizable. For

example, employing molecular dynamics-based virtual screening (MDBV), a state of the art

HPC can be 600 times faster than an eight-core PC server is in screening a typical drug target

(which contains about 40 K atoms). Also, careful design of the GPU/CPU architecture can

reduce the HPC costs [15].

A successful virtual drug screening campaign relies on a properly selected compound li-

brary. Brutal random virtual screening can lead failure even one has the highest performance

computing facility. Therefore, we desperately develop artificial intelligence (AI) applications in

pharmaceutical studies.

2. Artificial Intelligence and Drug Discovery

The essence of drug discovery is to identify a molecule that interacts its designated bio-

logical target from a compound library that have millions of molecules. To do this, we have to

understand the relation of molecular structure and activity (SAR). Here, the structure in SAR

is actually substructure. A drug molecule can be considered as a molecular machine consists of

various functional parts (also termed as substructures, fragments, or chemotypes). How to define

the functional parts has been puzzling for many years. Many methods, such as empiric-based

method [13], and computational rule based methods [7, 12, 28, 40] were proposed. There is no

perfect way to partition substructures from a compound library. Therefore, People also explored

other methods, such as molecular descriptors [30], atomic pairs [8], and fingerprints [6].

Conventionally, in order to predict whether a species (for example, a natural substance) has

a biological activity, scientists have to extract moieties from the substance, determine chemical

structures (represented in topologies, 3D shapes or static surfaces) of the active ingredients;

then to covert the chemical structures into a numeric array (called as molecular descriptors or

fingerprints). Then, various mathematic models are applied on the data to generate predictive
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models. Finally, the models result in the prognosis whether the substance is a candidate to

become a drug (Fig. 3).

Figure 3. Flow-chart for conventional structure-activity predictions

Molecular structure representations can be converted into various molecular descriptors

such as sub-structural fragments, scaffolds, atom pairs (paths), topologic indexes, physi-

cal/biological/chemical properties, and fingerprints (bit-maps). The combinations of the de-

scriptors will be figured out based on two principles: (1) a descriptor in the combination has

to be significantly associated with the property to be predicted; (2) descriptors within the com-

bination should be orthogonal to each other. Based upon the descriptor combination data, one

can build predictive models with learning methods as shown in Fig. 4.

Figure 4. Conventional flow-chart for applying AI methods in predicting pharmaceutical prop-

erties for molecules in drug discovery process

The cores of AI are pattern recognitions that are divided into numeric and non-numeric

pattern recognitions. Markush structure or substructure recognitions are non-numerical; self-

organizing map (SOM) (aka Kohonen network), support vector machine, hierarchical cluster

tree, or random forests (aka random decision forests) are numerical. The common defect of the

conventional machine learning algorithms is that the model performance highly relies on how a

modeler selects and combines the molecular descriptors. Unfortunately, there is not rational rules

to choose and combine molecular descriptors. In order to make up for this defect, people tried
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many approaches, such as rule-embedded naive Bayesian learning [24], multiple machine learning

models [23], and combining recursive partitioning with Nave Bayesian learning approaches [35].

Now, people realize that deriving substructures that related to activities from a molecule

or molecular library depends on related drug target. In the earlier time of chemoinformatics, a

number of molecular structure linear notions were developed due to the lack of computer graphic

terminals in that period. Weininger developed the linear notations system called as SMILES (sim-

plified molecular-input line-entry system) that are well accepted internationally [37]. SMILES is

an accurate language for molecules, a SMILES notation/sentence precisely describes the atomic

connectivity in a molecule. Thus, a compound library can be “written” as an article composed

in SMILES sentences. A focused compound library for a specific biological target can be viewed

as an article written in SMILES sentences under the same title.

This concept is important because we can derive substructures and activities relations (SAR)

without predefining substructures. With deep learning approaches, we can figure out the SAR

or predict drug targets with syntax pattern recognition techniques [25].

As shown in Fig. 5, a chemical structure is converted into a SMILES sentence, which is then

transformed to a reduced vocabulary, eventually a word embedding matrix is calculated and

finally sent to recurrent neural network (RNN) to train a learning model.

Figure 5. Training deep learning models using SMILES without predefining substructures

With self-attention mechanism, structure-activity/property relations (SAR/SPR) can be

discovered through chemical linear notation (for example, SMILES) syntax analyses using an

interpretable deep learning architecture. The syntax pattern recognition approach has been

applied in predicting chemical properties, toxicology, and bioactivity from experimental data

sets [2, 3, 9, 10, 17, 36, 44].

With the syntax pattern recognition protocol, drug-like, lead-like, or quasi-biogenic

molecules can be proposed by a deep learning program. A quasi-biogenic molecule generator

(QBMG) to compose virtual quasi-biogenic compound libraries by means of gated recurrent unit

recurrent neural networks has been reported. The library includes stereo-chemical properties,

which are crucial features of natural products. QMBG can reproduce the property distribution

of the underlying training set, while being able to generate realistic, novel molecules outside of

the training set. The proposed compounds were associated with known bioactivities. Therefore,
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with a given focused compound library for a biological target, a computer can generate novel

compounds that are promising to be active against the target [43].

A property of a molecule can associate with one or more substructures in its structure. For

chemical structure stability prediction, if one substructure is found responsible for the instability,

it will be enough to conclude the molecule is instable. A model (DeepChemStable) [22] employing

an attention-based graph convolution network based on the COMDECOM data (experimental

chemical compound instability data set [45]) was implemented to predict a compound instability.

The main advantage of this method is that is an end-to-end model, which does not predefine

structural fingerprint features, but instead, dynamically learns structural features and associates

the features through the learning process of an attention-based graph convolution network. The

previous ChemStable program (with conventional machine learning approach) [24] relied on a

rule-based method to reduce the false negatives. DeepChemStable, on the other hand, reduces the

risk of false negatives without using a rule-based method minimizing the rate of false negatives,

which is a greater concern for instability prediction (Fig. 6).

Figure 6. Flow-chart of an attention-based graph convolution network that predict a compound

chemical instability

Fragment-based drug design (FBDD) [16] gains great achievements these years. Linking

fragments to generate a focused compound library for a specific drug target is still puzzeling. A

program named SyntaLinker that is based on a syntactic pattern recognition with deep condi-

tional transformer neural networks was reported recently. The state-of-the-art transformer links

molecular fragments automatically by learning from known structures in medicinal chemistry

databases (such as ChEMBL). Linking the fragments was viewed as connecting substructures

that were predefined by empirical rules in the past. In SyntaLinker, however, the rules of linking

fragments can be learned implicitly from the known chemical structures by recognizing syntactic

patterns embedded in SMILES notations. With deep conditional transformer neural networks,

SyntaLinker can generate molecular structures based on a given pair of fragments and additional

restrictions [41].

Syntactic pattern has also been applied in predicting chemical reaction feasibility. Copper(I)-

catalyzed alkyneazide cycloaddition (CuAAC) reaction is a main click chemistry reaction [20]

and widely employed in drug discovery. However, the success rate of the CuAAC reaction is not

satisfactory as expected. A recurrent neural network (RNN) model was reported to predict its

feasibility. Authors designed and synthesized a structurally diverse library of 700 compounds

with the CuAAC reaction to obtain experimental data. Then, a bidirectional longshort-term

memory with a self-attention mechanism (BiLSTM-SA) model was built. The model achieved to-

tal accuracy of 80%. Density functional theory investigations were conducted to provide evidence

for the correlation between bromo-α-C hybrid types and the success rate of the reaction [32].
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3. Perspectives on Computational Opportunities

and Challenges in Drug Discovery

The Nobel Prize in Chemistry 2016 was awarded jointly to Jean-Pierre Sauvage, Sir J. Fraser

Stoddart and Bernard L. Feringa for the design and synthesis of molecular machines [33]. This

can be viewed as an overture for artificial molecular machine era. So far, chemists focus on

the mechanical aspects artificial molecular machines [1, 42]. Actually, a drug molecule can also

be viewed as an artificial molecular machine that consists of a number of parts (fragments) for

regulating biological targets. Thus, the essential questions for drug design methodology becomes

(1) what are the fragments for a drug molecule for its target? (2) how to assembly the fragments

to make (synthesize) a drug molecule? (3) how to biologically validate the assembled molecules.

FBDD, click chemistry (combinatorial chemistry), and HTS are the current answers to these

questions respectively. Drug discovery process is similar a machine invention process (Fig. 7).

Figure 7. Comparison of processes of a machine discovery and a drug discovery

Drug discovery is much more sophisticated than design and make a machine in macrocosm

due to a drug molecule has to regulate even more complicated biological machines in micro-

cosm [14, 21]. The main challenges to a drug designer are: (1) the designed plan for assembling

fragments is not necessarily chemically feasible; and (2) the designed molecules against a target

is not necessarily functioned as expected. Because most of the mechanisms of actions in life are

not well understood to us. Therefore, new drug design approaches and in silico experiments are

demanding to deal with the big data and computing complexity problems.

Artificial intelligence (AI) techniques will continue to demonstrate their power in drug dis-

covery. Especially, deep learning (DL) techniques have shown the usefulness in deriving SAR from

big biochemical data. However, DL assumes the positives and negatives are evenly distributed

in a training set, and the number of the samples is big enough. However, typical medicinal

chemistry data mainly contain positives with no or minor negatives.

Drug discovery involves multi-scale computation issues. For example, the length of a typical

human DNA molecule is about 1.8 meters (visible in macrocosm) has to be tightly packed up

to fit in the micro-meter-scale space of cell nucleus (in microcosm). We dont have a convincing

theory to explain how a DNA enters microcosm world from macrocosm world with the help of

histone proteins. It is a grand computational challenge to generate a model and simulate this
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process. Interestingly, recent report claimed that the histones are not just used for packing DNA,

they are enzymes that may have helped power eukaryote evolution [4].
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