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Modern high-performance computing (HPC) systems consist of a large number of nodes fea-

turing multi-core processors. Many computational fluid dynamics (CFD) codes utilize a Message

Passing Interface (MPI) to exploit the potential of such systems. In general, the MPI commu-

nication costs increase as the number of MPI processes increases. In this paper, we discuss per-

formance of the code in which a core is used as a dedicated communication core when the core

cannot contribute to the performance improvement due to memory-bandwidth limitations. By

using the dedicated communication core, the communication operations are overlapped with com-

putation operations, thus enabling highly efficient computation by exploiting the limited memory

bandwidth and idle cores. The performance evaluation shows that this code can hide the MPI

communication times of 90% on the supercomputer SX-ACE system and 80% on the supercom-

puter SX-Aurora TSUBASA system, and the performance of the successive over-relaxation (SOR)

method is improved by 32% on SX-ACE and 20% on SX-Aurora TSUBASA.

Keywords: Thermal plasma flows, SOR method, MPI, OpenMP, Performance tuning, SX-

ACE, SX-Aurora TSUBASA.

Introduction

Recently, high-performance computing (HPC) systems have been attaining higher arithmetic

operation performance. According to the latest Top500 ranking [1], the highest performance of

an HPC system is 513 petaflop/s (Pflop/s). HPC systems consist of a large number of nodes

with multi-core processors. An application on these systems has to be divided into parallel com-

putation operations and is executed on the multiple cores in parallel. In these cases, a core

cannot directly access the data on other nodes; rather, it has to access other nodes by using the

data communication provided by the MPI library, which enables point-to-point communication

among cores (processes) and collective communication with all cores (processes). In general, par-

allelization of programs is expected to enable their faster executions by increasing the number of

cores. However, with an increased amount of parallelization performed, the decrease in data com-

munication operation time is often small compared with the decrease in computation operation

time. Therefore, decreasing the communication time in large-scale simulations is required.

Research studies have explored the combining MPI and OpenMP models (MPI+OpenMP

models) to enable overlapping between computation and communication operations, and new

features on OpenMP and MPI have been utilized. Sergent et al. studied task scheduling using the

OpenMP Tools interface in OpenMP 5.0 and leveraged idle periods of computational threads to

progress MPI communications [13]. Castillo et al. presented a mechanism for exchanging event

information between MPI and task-based runtime through the MPI tools interface (MPI T)

in MPI 3.0 and enhanced a task scheduler for improving the performance of overlapping of
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computation with communication [3]. The MPI+OpenMP models have also been evaluated on

various HPC systems. Gorobets et al. developed a parallel CFD algorithm of turbulent flows

with a multilevel MPI+OpenMP+OpenCL parallelization and evaluated the performance of the

CFD code on Intel Xeon, Xeon Phi, and Xeon with NVIDIA K80 GPU systems [5]. Oyarzun

et al. also evaluated the performance of a thermo-fluid code with the similar parallelization on

ARM-based CPUs and GPUs fused in a System-on-Chip (SoC) architecture [12]. Idomura et al.

evaluated plasma turbulence with MPI+OpenMP parallelization on K-computer [6]. However,

the performance of the MPI+OpenMP models on vector supercomputers SX-ACE and SX-

Aurora TSUBASA has rarely been evaluated. Therefore, in this paper we clarify the potential

of the models on SX-ACE and SX-Aurora TSUBASA using only the basic function of OpenMP,

which is the schedule clause of the work-sharing constructs.

In Section 1, we present our simulation code and the specifications of the evaluation systems.

Section 2 describes evaluated overlapping models using a dedicated communication core. In

Section 3, we evaluate the performance of the models on the systems. The last section concludes

this paper.

1. Modern Vector Supercomputers and Target Application

1.1. SX-ACE

The SX-ACE supercomputer system is composed of up to 512 nodes interconnected by a

custom network switch. Figure 1 depicts an overview of the SX-ACE processor with four powerful

vector-architecture cores. A node of SX-ACE consists of one processor and a local memory. The

processor can provide a double-precision floating point operating rate of 256 Gflop/s with a

memory bandwidth of 256 GByte/s, and its memory capacity is 64 GBytes. In order to achieve

a high sustained performance, the ratio of memory bandwidth to floating-point operation (flop/s)

rate (Bytes per Flop, B/F) is a key factor. The system B/F per processor of SX-ACE is 1.0,

which represents a good balance between performance and memory bandwidth. Each core is

composed of a scalar processing unit (SPU), a vector processing unit (VPU), and a vector on-chip

cache called Assignable Data Buffer (ADB) implemented with Miss Status Handling Register

(MSHR) [4, 10, 11]. VPU is a fundamental component of the SX-ACE vector architecture with

its performance of 64 Gflop/s. SX-ACE can process up to 256 vector elements, eight bytes each,

by a single vector instruction. The vector architecture works in a single instruction multiple
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Figure 1. Overview of SX-ACE processor
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data (SIMD) manner. The ADB with MSHR avoids redundant data transfers for vector load

operations by keeping reusable data on a chip. SPU mainly works as a VPU controller and

inherits the architecture of 64-bit RISC processors. The SX-ACE nodes are connected via a

custom inter-connect network at a 4 GB/s bandwidth per direction.

The operating system (OS), SUPER-UX, is a production-proven environment based on

UNIX System V with several extensions for performance and functionality.

The Fortran and C/C++ compilers support automatic vectorization and parallelization, and

parallelization using OpenMP (OpenMP Version 2.5). NEC MPI is implemented in accordance

with MPI-3.0 [2].

The Fortran compiler, FORTRAN90/SX, and the C/C++ compiler, C++/SX, support

functions of automatic optimization, automatic vectorization, automatic parallelization, and

OpenMP (OpenMP Version 2.5). NEC MPI is implemented in accordance with MPI-3.0 [2].

Here, Tab. 1 lists specifications of SX-ACE and SX-Aurora TSUBASA and options of each

Fortran compiler.

Table 1. Specifications of SX-ACE and SX-Aurora TSUBASA

SX-ACE SX-Aurora TSUBASA

Core Theoretical performance 64 Gflop/s 304 Gflop/s

Memory bandwidth 256 GB/s 405.5 GB/s

B/F 4.0 1.33

CPU Number of cores 4 8

Theoretical performance 256 Gflop/s 2.43 Tflop/s

LLC capacity 1 MB (private) 16 MB (shared)

LLC bandwidth 1000 GB/s 3244 GB/s

Memory bandwidth 256 GB/s 1.35 TB/s

B/F 1.0 0.55

Node Number of CPUs 1 8

Memory capacity 64 GB 384 GB

Network bandwidth 8 GB/s 25 GB/s

Fortran Version Rev.537 Rev.3.0.6

compiler Options -Popenmp, -pi, -EP -fpp, -finline-functions, -fopenmp

1.2. SX-Aurora TSUBASA

SX-Aurora TSUBASA is the newest vector supercomputer released in 2018 [8, 17]. It consists

of one or more card-type vector engines (VEs) and a vector host (VH). The VE is the main

part of SX-Aurora TSUBASA and contains a vector processor, a 16 MB shared last-level cache

(LLC), and six High Bandwidth Memory 2 (HBM2) memory modules, as shown in Fig. 2.

The vector processor has eight vector cores. As shown in Tab. 1, the peak performances of a

vector core and a vector processor are 304 Gflop/s and 2.43 Tflop/s, respectively. The memory

bandwidths are 405.5 GB/s per vector core and 1.35 TB/s per VE. The B/F rates are 1.33

per vector core and 0.55 per vector processor, respectively. The VH is a standard x86 Linux
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Figure 2. Block diagram of a vector engine

Infiniband Network

Figure 3. Block diagram of SX-Aurora TSUB-

ASA system

server and executes the OS of the VE. While the conventional SX series runs the OS on a vector

processor, SX-Aurora TSUBASA offloads OS-related processing to the VH. The VH consists

of up to two Xeon processors and can handle up to eight VEs as shown in Fig. 3. Moreover,

SX-Aurora TSUBASA can compose a large system by connecting the VHs via the InfiniBand

switch.

The SX-Aurora TSUBASA system supports Red Hat Enterprise Linux and CentOS, and the

VH provides OS functions such as process scheduling and handling of system calls invoked by the

application running on the VEs. The programming environment includes NEC MPI and NEC

Software Development Kit for Vector Engine (NEC SDK). NEC SDK contains an NEC Fortran

compiler, NEC C/C++ compiler, NEC Numeric Library Collection, NEC Parallel Debugger,

and NEC Ftrace Viewer. The Fortran and C/C++ compilers support functions of automatic op-

timization, automatic vectorization, automatic parallelization, and OpenMP (OpenMP Version

4.5). NEC MPI is implemented in accordance with MPI-3.1.

1.3. Thermal Plasma Flow Code

An evaluated code simulates the 3D turbulence on thermal plasma flow. This code solves the

conservation that is simulated by solving the conservation equations of mass, momentum, and

energy [14]. It uses the Hybrid Upwind K-K scheme and the Adams-Moulton method with third-

order accuracy to discretize the convection terms and the time derivative terms, respectively.

The discretized equations are numerically solved using the Successive Over-Relaxation (SOR)

method. The simulation needs to be magnified in order to accurately reproduce the phenomenon

in this code, and our target is the large scale simulation of 2.7 billion grids.

The code uses a Cartesian coordinate system and consists of triple loops. The two outer

loops, Y-axis and Z-axis, are parallelized by the domain decomposition method, and the outer-

most loop, Z-axis, is also parallelized by OpenMP. The sub-routine with the SOR method has

an unvectorizable loop structure, and the red-black parallelization method [7] is utilized to vec-

torize it on the SX-ACE supercomputer [16]. However, the computation cost of the sub-routine

with the SOR method is the largest. The data sizes of the evaluated code are listed in Tab. 2.

The SOR method is an iterative method that executes a convergent calculation of the

residual error. To perform this process, a collective communication operation for summing up

residual values and a point-to-point communication operation for exchanging the boundary data

are required. It takes longer to perform the point-to-point communication than the collective
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Table 2. Data sizes of evaluated code

Model Data size Number of grids

X Y Z

Small data 516 204 204 21,473,856

Medium data 1280 512 512 1,342,177,280

Large data 2560 1024 1024 2,684,354,560
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Figure 4. Breakdown of execution time

communication in this code. Therefore, the execution time for the point-to-point communication

should be shortened.

Figure 4 shows the breakdown of execution time for the large data with 2.7 billion grids on

the evaluation code when increasing the number of nodes. The blue and red parts of the bars

indicate the execution times for the computation and communication on SX-ACE, respectively.

When this code is executed on the 128-node SX-ACE, the computation operation takes up more

time than the communication operation. However, when we increase the number of nodes to 512,

the communication operation becomes dominant. As a result, the communication operation time

becomes dominant in the entire operation time as the number of nodes increases.

Figure 5. Relationship between execution time and number of cores on SX-ACE

Effects of Using a Memory Stalled Core for Handling MPI Communication Overlapping...
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Figure 6. Diagram of the computation and communication operations of the SOR method

We evaluate the execution time (arithmetic time, memory time, and communication time)

with changing the number of OpenMP threads per processor from one-thread to four-thread

on SX-ACE. Figure 5 shows the relationship between the execution time and the number of

OpenMP threads using four SX-ACE nodes with the small data. The memory time indicates

the stall time of the core due to data load from the memory. The actual B/F [8] is 5.2 from the

hardware counter of instructions on SX-ACE and indicates that the code is memory intensive

for SX-ACE. The arithmetic time decreases with increasing the number of threads. However,

the memory time increases from the two-thread case to the four-thread case. Therefore, the data

transfer between the processor and the main memory becomes a bottleneck.

As mentioned above, even if the memory-intensive program uses all cores for computation

operation, it cannot achieve a highly parallelized performance. Therefore, in our overlapping

strategy, one core is assigned for the communication operation and the other cores for the

computation operation. We examine the effect of the overlapping model from the viewpoint of

hiding the communication operation time in memory-intensive applications such as those using

the SOR method.

2. Evaluated MPI+OpenMP Models

Figure 6 shows the diagram of the parallel execution of the SOR method by MPI using

OpenMP. This parallelization cannot overlap the computation operation with the communica-

tion one. Specifically, a thread on each core executes the calculation of the computation area

that is divided by OpenMP, and then thread 0 starts processing of the communication opera-

tions after all the threads for computation have been completed. The communication operation

gathers/scatters the boundary data for MPI communications.

The overlap of the computation operation and the communication operation is necessary to

decrease the execution time. Figure 7 shows the basic concept of overlapping in the SOR method.

First, the computation of the boundary data, which is sent by MPI communications, is executed

for the communication operation. In the next step, both the computation of the non-boundary

data and the communication of the boundary data are executed in parallel. Eventually, the time

for the communication operation can be hidden.

Figure 8 shows the diagram of the overlapping model using the “schedule” clauses on

OpenMP. First, all cores execute the computation of the boundary data. It then executes the

T. Soga, K. Yamaguchi, R. Mathur, O. Watanabe, A. Musa, R. Egawa, H. Kobayashi

2020, Vol. 7, No. 4 9



communication operation. After that, thread 0 begins to execute the non-boundary data, which

is parallelized on four threads. Meanwhile, the other threads calculate the non-boundary data

after the calculation of the boundary data. Therefore, the communication operation is over-

lapped with the calculation of the non-boundary data. When the communication operations are

completed, thread 0 begins the execution of the computation operations for the non-boundary

data. These operations are controlled automatically by OpenMP. The “schedule (static)” clause

is used in this implementation because it has a smaller overhead for OpenMP than that of the

“schedule (dynamic)” clause [9]. Although the overlapping can be achieved simply by using the

directive statement, there is still an overhead of OpenMP.

In this study, we focus on the memory-intensive code that cannot effectively use all cores

in a processor. Figure 9 shows the diagram of our execution model [15]. In the first step, all

threads execute the computation operation of the boundary data. Then, thread 0 is used as a

dedicated communication thread and executes the communication operation. At the same time,

other threads simultaneously execute the computation operation of the non-boundary data. Each

thread executes the prearranged DO loop as shown in Fig. 9, where the program calculates the

starting and ending point of the DO loop on each thread.

3. Performance Evaluation

We evaluate three kinds of execution models: the non-overlapping model (Fig. 6), called

“Original”, the overlapping model (Fig. 8), called “Schedule”, and our model (Fig. 9), called

“Manual”. This evaluation measures the calculation time of the SOR method in 20 time steps

using three data sets in the code. First, the performance on SX-ACE is evaluated using the small

and large data sets. The next evaluation uses the small and medium data sets on SX-Aurora

TSUBASA. We will evaluate the performance on SX-Aurora TSUBASA using a large data set

when a large system for it can be constructed.

3.1. Evaluation Results on SX-ACE

Figure 10 shows the execution times with the small data set using four and 16 nodes of SX-

ACE. Here, computation time contains arithmetic time and memory time. Each node executes

one MPI process and four OpenMP threads. Figure 10 (a) shows the case of using four nodes. The

communication time includes the operation times for gathering and scattering of boundary data.

For “Original”, the computation time is 742 seconds and the communication time is 145 seconds,

resulting in the total time of 887 seconds. “Manual” hides 121 seconds in the communication

Computation of boundary data

Communication of
Computation of 
non-boundary

data

Overlap

Computation of boundary 

and non-boundary data

Communication of 
Shorten

Non-overlapping Overlapping

Figure 7. Basic concept of overlapping
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Figure 8. Diagram of implementation using “schedule” clauses on OpenMP

time, and it coresponds to 83% of the communication time. “Schedule” hides 40 seconds. The

overlapping effect of “Schedule” is smaller than that of “Manual” because the OpenMP overhed

of “Schedule” is larger. Figure 10 (b) shows the result for the 16-node case. The computation

time for “Original” decreases from 742 seconds to 208 seconds compared with the four-node case.

On the other hand, the communication time for “Original” decreases by only 13 seconds, and the

percentage of communication time to the total operation time becomes about 40%. “Manual”

Thread 0
Thread 1           2          3 

1 !$omp parallel
2       numth = omp_get_num_threads()
3 !$omp end parallel
4       length = (ked - 1) - (kst + 1) + 1
5       nodd = mod(length,numth-1)
6       if(nodd.ne.0) then
7        kst2(0) = kst + 1
8        ked2(0) = kst + nodd
9       else

10        kst2(0) = 0
11        ked2(0) = 0
12       endif
13       do i = 1,numth - 1
14        ndiv = length / (numth-1)
15        kst2(i) = Ked2(i-1) + 1
16        ked2(i) = Kst2(i)   + ndiv - 1
17      enddo

Figure 9. Diagram of our overlapping model

(a) 4-node case (b) 16-node case

Figure 10. Evaluation results with small data set on SX-ACE

T. Soga, K. Yamaguchi, R. Mathur, O. Watanabe, A. Musa, R. Egawa, H. Kobayashi

2020, Vol. 7, No. 4 11



(a) 256-node case (b) 512-node case

Figure 11. Evaluation results with the large data set on SX-ACE

hides the communication time of 88 seconds, which coresponds to 67% of the communication

time of “Original”. “Schedule” hides 36 seconds in the communication time of “Original”.

Figures 11 (a) and (b) show the results of the 256-node and 512-node cases with the large

data set, respectively. Each node of SX-ACE uses one MPI process and four OpenMP threads

in this evaluation. In Fig. 11 (a), “Manual” hides the communication time of 746 seconds,

which coresponds to 90% of the communication time of “Original”, and “Schedule” hides 469

seconds in the communication time of “Original”. When the number of nodes increases from

256 to 512, the percentage of communication time to the total time becomes large. However,

“Manual” in Fig. 11 (b) is able to hide 547 seconds in the communication time of “Original”,

which represents a 90% decrease in the communication time. Meanwhile, the hidden time on

“Schedule” decreases to only 233 seconds. Our overlapping model “Manual” can hide a great

part of the communication time, and the execution times for the 512-node decreases by about

32%. On the basis of the above results, we show that SX-ACE has a potential to improve the

performance of MPI+OpenMP models for the memory-intensive code.

3.2. Evaluation Results on SX-Aurora TSUBASA

Figure 12 shows the execution times with the small data set using two and four VEs of

SX-Aurora TSUBASA. Each VE is combined via a PCIe switch and executes one MPI process

and eight OpenMP threads. Figure 12 (a) shows the results using two VEs. The communication

time of “Original” in Fig. 12 (a) is 43 seconds. “Manual” hides 29 seconds, which represents a

(a) 2-VE case (b) 4-VE case

Figure 12. Evaluation results with small data set on SX-Aurora TSUBASA
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(a) 16-VE case (b) 32-VE case

Figure 13. Evaluation results with medium data set on SX-Aurora TSUBASA

roughly 67% decrease in the communication time. Figure 12 (b) shows the results using four

VEs. The communication time of “Original” is nearly the same as that in Fig. 12 (a), although

increasing the number of MPI processes. “Manual” also hides 25 seconds, which coresponds to

roughly 60% of the communication time. However, “Schedule” in the case of two and four VEs

has little overlapping effort.

We utilize 16 and 32 VEs of SX-Aurora TSUBASA for evaluation in the medium data

set. The 16-VE and 32-VE systems contain two VHs and four VHs, respectively. Each VH is

connected via an InfiniBand switch, and executes one MPI process and eight OpenMP threads.

Figures 13 (a) and (b) show the evaluation results for 16 VEs (2 VHs) and 32 VEs (4 VHs). The

computation time in “Original” on 32 VEs decreases from 848 seconds to 473 seconds compared

with the case of 16 VEs, and the ratio of the communication times to the total time on the

16 and 32 VEs are about 30% and 27%, respectively. In both cases, “Manual” can hide a part

of the communication time: on 16 VEs, it hides about 251 seconds among the communication

time of 355 seconds, which coresoponds to roughly 70% of the communication time, and 32 VEs,

it hides about 140 seconds among the communication time of 171 seconds, which represents a

roughly 80% in the communication time. Then, the overall execution times on each case can

decrease by about 20%. Meanwhile, “Schedule” was unable to decrease the execution times.

SX-Aurora TSUBASA was released in 2018, and the fortran compiler was newly developed.

Therefore, the overhead of OpenMP on SX-Aurora TSUBASA is high. In this evaluation, our

overlapping model, “Manual”, can hide a great part of the communication time on SX-Aurora

TSUBASA. We expect our overlapping model to produce increasing performance on a larger

data set with a larger system.

Conclusions

In this work, we focused on the overlapping between the computation and MPI communica-

tion operations of the SOR method in a thermal plasma flow simulation code, and examined an

implementation of MPI+OpenMP models where OpenMP thread 0 assigns the communication

operation and a part of the computation operation. Evaluation results demonstrated that SX-

ACE and SX-Aurora TSUBASA show a good potential for overlapping computation and MPI

communication on memory intensive codes, and our overlapping model, “Manual”, can hide the

MPI communication times of 90% on SX-ACE and 80% on SX-Aurora TSUBASA. Our over-

lapping model with SX-ACE and SX-Aurora TSUBASA is expected to increase perforamnce of

memory intensive codes.
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In future work, we will evaluate our three models using memory intensive codes from various

application fields on SX-Aurora TSUBASA and other systems: such as Intel Xeon and AMD

EPYC.
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