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General purpose GPUs are now ubiquitous in high-end supercomputing. All but one (the

Japanese Fugaku system, which is based on ARM processors) of the announced (pre-)exascale

systems contain vast amounts of GPUs that deliver the majority of the performance of these

systems. Thus, GPU programming will be a necessity for application developers using high-end

HPC systems. However, programming GPUs efficiently is an even more daunting task than tra-

ditional HPC application development. This becomes even more apparent for large-scale systems

containing thousands of GPUs. Orchestrating all the resources of such a system imposes a tremen-

dous challenge to developers. Luckily a rich ecosystem of tools exist to assist developers in every

development step of a GPU application at all scales.

In this paper we present an overview of these tools and discuss their capabilities. We start

with an overview of different GPU programming models, from low-level with CUDA over pragma-

based models like OpenACC to high-level approaches like Kokkos. We discuss their respective

tool interfaces as the main method for tools to obtain information on the execution of a kernel

on the GPU. The main focus of this paper is on two classes of tools, debuggers and performance

analysis tools. Debuggers help the developer to identify problems both on the CPU and GPU side

as well as in the interplay of both. Once the application runs correctly, performance analysis tools

can be used to pinpoint bottlenecks in the execution of the code and help to increase the overall

performance.
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Introduction

General purpose GPUs are now ubiquitous in high-end supercomputing. With the rise of

deep learning and the convergence of simulation-based HPC and AI, GPU computing took a

major leap forward. All but one (the Japanese Fugaku system, which is based solely on ARM

processors) of the announced (pre-)exascale systems contain vast amounts of GPUs that deliver

the majority of the performance of these systems. Thus, GPU programming will be a necessity for

application developers using high-end HPC systems. However, programming GPUs efficiently

is an even more daunting task than traditional HPC application development. This becomes

even more apparent for large-scale systems containing thousands of GPUs. Orchestrating all

the resources of such a system imposes a tremendous challenge to developers. Besides GPUs

other accelerators have been tried, the most prominent being Intels Xeon Phi as a many-core

architecture and FPGAs. However, the Xeon Phi has been discontinued and FPGAs are only a

niche solution for very specific workloads or research projects, but not (yet) ready for production

use in general HPC.

NVIDIA GPUs power most of todays GPU-enabled supercomputers. 136 systems in the

TOP500 list of November 20192 are equipped with NVIDIA GPUs, including the number one

and two systems, the U.S.-based Summit [33] and Sierra [25] supercomputers. Thus, we put a

strong focus on NVIDIA GPUs in this paper.

Tools have always been an integral part of the HPC software stack. Debuggers and correct-

ness checker help application developers to write bug-free and efficient code. Code efficiency can
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be improved by pinpointing bottlenecks with performance analysis tools. The tools community

is working hard to provide tools that master the complexity of modern HPC systems [30], facing

the same challenges when scaling up as the application developers themselves. Today, a rich

ecosystem of tools exist to assist developers in every development step of a GPU application at

all scales, from a workstation to a supercomputer.

In this paper we present an overview of these tools and discuss their capabilities. We present

the currently dominant programming models for GPU computing and discuss their tool interfaces

as the main method for tools to obtain information on the execution of a kernel on the GPU in

section 1. Then we look into debuggers in section 2, which help to develop correct heterogenous

applications that scale to several hundred or thousand of GPUs. Performance analysis tools,

which help to use these resources efficiently, are discussed in section 3. Finally we conclude the

paper and give an outlook on future developments in heterogenous supercomputing.

1. GPU Programming Models

For decades two programming paradigms dominated the HPC landscape – distributed-

memory programming (inter-node) and shared-memory programming (intra-node). The main

programming model for distributed-memory programming is MPI, the Message Passing Inter-

face [28], which is used in virtually all HPC applications. MPI is a rather low-level interface,

i.e. the user has to explicitly express the communication pattern and data transfers. Shared

memory programming is mostly done via OpenMP [36], a directive-based API. For both MPI

and OpenMP alternatives exist, like the PGAS (Partitioned Global Address Space) model for

distributed memory or pthreads and TBB (Threading Building Blocks) for shared memory, but

none come close in popularity to MPI and OpenMP.

With the advent of general purpose GPUs, things changed significantly. Now a new very

powerful but also very complex architecture was thrown into the mix, yet on the other hand the

old programming paradigms are still valid in order to create scaling HPC applications. There

exist several programming models for GPUs, some are low-level like MPI, others are pragma-

based like OpenMP. Some support only certain languages or specific vendor architectures, others

are more open. So it is a challenge for an application developer to choose the right programming

model for his application, but also for tools developers to choose which models to support. In

this section we present various GPU programming models that suits different needs, CUDA

and OpenCL as high-performance low-level interfaces, OpenACC and OpenMP as easy-to-use

yet efficient directive-based approaches and KOKKOS and RAJA that aim for performance

portability on a wide range of architectures. Where applicable we also give an introduction to

the respective tools interface as the main source for tools to get information on the kernels

running on the accelerator and the data transfers to and from the device.

1.1. CUDA

CUDA [32] is a parallel computing platform and programming model developed by NVIDIA

for general computing on NVIDIA GPUs. It is a very low-level interface, i.e. the programmer has

to specify every data movement and kernel launch explicitly. Given access to all hardware features

of modern GPUs like Unified Memory, CUDA can yield the highest performance achievable on

GPUs. However, this comes at the cost of a rather high development effort and non-portability.

A rich set of libraries, both from NVIDIA directly and from third parties, are available for
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CUDA, enabling developers to harness the power of CUDA without the need to deal with all

the low-level details of the architecture. So far CUDA is the most popular programming model

for GPU programming, thus most tools support CUDA to some extend. While CUDA itself is

C++, CUDA bindings exist for many programming languages like C, Fortran (currently only

for PGI compilers), Python and MATLAB.

1.1.1. CUPTI – The CUDA Performance Tools Interface

The NVIDIA CUDA Profiling Tools Interface (CUPTI) provides performance analysis tools

with detailed information about how applications are using the GPUs in a system. CUPTI pro-

vides two simple yet powerful mechanisms that allow performance analysis tools to understand

the inner workings of an application and deliver valuable insights to developers. The first mech-

anism is a callback API that allows tools to inject analysis code into the entry and exit point of

each CUDA C Runtime (CUDART) and CUDA Driver API function. Using this callback API,

tools can monitor an applications interactions with the CUDA Runtime and driver. The second

mechanism allows performance analysis tools to query and configure hardware event counters

designed into the GPU and software event counters in the CUDA driver. These event counters

record activity such as instruction counts, memory transactions, cache hits/misses, divergent

branches, and more. This enables automated bottleneck identification based on metrics such as

instruction throughput, memory throughput, and more.

1.2. OpenCL, SYCL and oneAPI

The aim of OpenCL, the Open Computing Language, is to provide a vendor independent

programming interface for all kinds of computing devices, from CPUs over GPUs to FPGAs.

OpenCL is developed by the Khronos Group, an open industry consortium of over 100 leading

hardware and software companies. OpenCL, like CUDA, is a low-level API where the kernels

are written in the OpenCL C++ kernel language, a static subset of C++14.

To ease the development of heterogenous applications, the Khronos group developed SYCL

as an abstraction layer build on the concepts, portability and efficiency of OpenCL. SYCL allows

the developer to program on a higher level than OpenCL, while still having access to lower-

level code. A lot of the boilerplate code of OpenCL is removed by SYCL and a single-source

programming, where host and device code are contained in the same source file, is enabled.

The newest member in the OpenCL language space is Intel’soneAPI with DPC++ (Data

Parallel C++), which in turn is built upon SYCL. Due to its recent Beta release and the – at the

time of writing – limited availability of hardware, the support of tools for oneAPI could not be

evaluated for this paper. However, it is clear that the well-known Intel tools VTune and Advisor

will have rich support for oneAPI. The most interesting and unique feature of the Intel Advisor

will be an analysis of the potential gain of offloading a sequential code path to an accelerator.

It will be interesting to see how oneAPI will be adopted by the HPC community and how

the tools support for SYCL and oneAPI develops. Codeplay, a compiler vendor and active part

in the SYCL community, recently announced SYCL support for NVIDIA GPUs [38], which

could dramatically increase the interest in SYCL as a portable API as it significantly increases

to potential user-base.
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1.2.1. The OpenCL Profiling Interface

OpenCL provides a very basic interface to get profiling information on memory operations

and kernel launches. If profiling is enabled, the function clGetEventProfilingInfo returns

timing information of OpenCL functions that are enqueued as commands to a command-queue.

The most interesting for performance analysis are the begin and end timestamps of kernel

launches. The SYCL specification defines a similar profiling interface. However, most tools with

OpenCL support use some form of library wrapping to obtain information of the OpenCL

execution.

1.3. OpenACC

The OpenACC (Open ACCelerator) API [34] describes a collection of compiler directives

to specify loops and regions of code to be executed in parallel on a multicore CPU, or to be

offloaded and executed in parallel on an attached accelerator device, providing portability across

operating systems, CPUs, and accelerators. With directives for C/C++ and Fortran, OpenACC

covers the most important programming languages for HPC.

OpenACC eases the development of heterogenous applications as it relieves the user from

explicit accelerator and data management as well as data transfers to and from the device. Data

management is handled with the data construct, where enter data and exit data directives can be

used to control data transfers between host and device. Two fundamental compute constructs,

kernels and parallel can be used to offload the execution of code blocks to an accelerator.

While OpenMP is a prescriptive programming model, i.e. the developer explicitly states

how to split the execution of loops, code regions and tasks among well-defined teams of threads,

OpenACC is more descriptive model, telling the compiler where it is safe to parallelize loops or

offload kernels and what data has to be transferred. This enables the compiler to perform more

optimizations and generate faster code [43].

1.3.1. OpenACC Profiling Interface

OpenACC provides a profiling interface for both profile and trace data collection. This

interface provides callbacks that are triggered during runtime if specific events occur. Three

types of events are supported: data events, launch events and other events. Data events cover

the allocation/deallocation of memory on the accelerator as well as data transfers. Launch events

trigger before and after a kernel launch operation. Other events include device initialization and

shutdown as well as wait operations [10]. However, these events only give host-side information.

For information on the device the respective tools interface of the backend has to be used.

1.4. OpenMP

OpenMP is a directive-based API already well known for shared-memory parallelization on

CPUs which is easy to learn. It also offers a path to more portable GPU-accelerated applica-

tions. Like OpenACC, one of the goals of the OpenMP standard is to minimize the need for

applications to contain vendor-specific statements. Thus, codes are portable across all supported

GPU architectures.

Pragmas to offload work on general purpose GPUs have been introduced in OpenMP 4 [35],

the OpenMP device constructs. The target construct is required to specify a region to be launched
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on the device. Target data maps the variables on the device. The teams pragma inside target

spawns the set of teams with multiple OpenMP threads. The distribute construct partitions the

iterations and maps it to each team.

1.4.1. The OpenMP Tools Interfaces

Unlike the other programming interfaces, OpenMP since version 5 [36] provides two tools

interfaces, OMPT for performance analysis tools and OMPD for debuggers [12].

OMPT [13] is a portable interface for both sampling-based and instrumentation-based per-

formance analysis tools. Like the other tool interfaces, OMPT provides callbacks for defined

OpenMP events, like the begin of a parallel region or the start of a offloaded kernel. It also

maintains the tools data for OpenMP scopes and it provides signal-safe inquiry functions to get

OpenMP runtime information. OMPT is intended for first-party tools, i.e. tools that are linked

into or loaded from the OpenMP application.

OMPD, the OpenMP debugging interface, on the other hand is an interface for third-party

tools, i.e. tools that live in a different process from the OpenMP application. This interface allows

external tools to inspect the OpenMP state of a running program via callbacks. The debugger

has no direct access to the OpenMP runtime, it interacts with it through the OMPD architecture

and the OMPD interface is transparent to the OpenMP application. The OMPD library can be

used to debug a running program as well as core files generated when the application aborted

due to an error.

1.5. Kokkos and RAJA

As stated above, HPC programming models didn’t change for a long time, which gave

application developers some confidence that their application will perform on the next generation

of machines. With an increased variability in architectures and programming models that does

not hold any more. An application tuned for a specific platform could perform badly on the

next system, which could be completely different from the current one. Further, applications

and libraries that are used universally need some kind of assurance to perform well on a wide

range of architectures.

In the scope of the Exascale Computing Project [29], two projects emerged that strive for

performance portability by providing an abstraction layer over the existing programming models.

Both originate from US national laboratories, one is Kokkos [11], developed at Sandia, and the

other one RAJA [2] from LLNL. The abstraction layers include memory and execution spaces,

data layout (i.e. the data layout might change depending on the architecture the application is

compiled for) and parallel execution.

Both Kokkos and RAJA currently provide only C++ interfaces and only have a CUDA

backend for offloading work to a GPU, though support for other programming models is likely

to follow.

1.5.1. The Kokkos Profiling Interface

Kokkos provides a set of hooks for profiling libraries to interface with the Kokkos run-

time [19]. These hooks can be implemented in the form of callbacks within a shared library.

Upon start of the application, the Kokkos runtime loads the library, checks for implemented

callbacks, and invokes the performance monitor via corresponding callbacks. Currently Kokkos
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supports callbacks for initialization and finalization of the runtime, deep data copies, and the

three parallel execution models parallel for, parallel reduce, and parallel scan. Similar

to the OpenACC profiling interface only events on the host are triggered, though device events

can be captured with CUPTI. RAJA unfortunately does not provide a profiling interface at this

time.

2. Debuggers

Developing correct parallel programs is already a daunting task, adding the complexity of

GPUs to the mix makes that endeavour even harder. This holds especially when using low-level

programming paradigms, where the user is responsible for correct memory management and

data movement. Luckily, several debugging solutions exist to assist the application developer in

finding and fixing bugs, both at small and large scale.

Table 1. Debugger compatibility matrix showing the level of support of different

debuggers for the most popular GPU programming models [Status Feb. 2020]

Tool CUDA OpenACC OMPD OpenCL

CUDA-MEMCHECK yes partly (CUDA kernels) no no

CUDA-GDB yes partly (CUDA kernels) no no

TotalView yes yes prototype no

DDT yes yes no no

Debuggers, especially those for large-scale HPC systems are very complex and sophisticated

pieces of software and virtually no open source solution exist here. The main debugging solutions

for GPU programming right now are the NVIDIA provided CUDA-MEMCHECK and CUDA-

GDB and the commercially available TotalView and DDT. Table 1 shows the supported GPU

programming models of each of these debuggers. There is very good support for CUDA and

OpenACC (where the NVIDIA tools support the debugging of the generated CUDA kernels),

but nearly no support for the other programming models. TotalView showed a prototype with

support for OpenMP offloading using an experimental OMPD-enabled OpenMP runtime. There

exist a couple of debugges for OpenCL, but none proved usable for complex HPC applications3.

2.1. NVIDIA Debugging Solutions

NVIDIA realized the importance of debugging for novel programming paradigms right from

the beginning and shipped debugging tools right from the beginning with the CUDA toolkit [17].

These tools can be used standalone from the command-line, but are also integrated in the Nsight

IDE [20], NVIDIAs development platform for CUDA and OpenACC applications. An example

debugging session is shown in Fig. 1.

2.1.1. CUDA-MEMCHECK

CUDA-MEMCHECK is like valgrind for GPUs, a very powerful memory tracker and analy-

sis tool. Hundreds of thousands of threads running concurrently on each GPU can be monitored.

3Some promising OpenCL debuggers are usable only on Microsoft Windows, which is not the intended platform

for HPC applications
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Figure 1. Debugging a CUDA application from within the Nsight IDE

It reports detailed information about global, local, and shared memory access errors (e.g. in-

dex out-of-bounds or misaligned memory accesses) and runtime executions errors (e.g. stack

overflows and illegal instructions). Potential race conditions can also be detected with CUDA-

MEMCHECK. In case of an error, CUDA-MEMCHECK displays stack back-traces on host and

device.

2.1.2. CUDA-GDB

CUDA-GDB is, as the name indicates, an extension to gdb, the Unix debugger. Simultaneous

debugging on the CPU and multiple GPUs is possible. The user can set conditional breakpoints

or break automatically on every kernel launch. It is possible to examine variables, read/write

memory and registers and inspect the GPU state when the application is suspended. Memory

access violations can be analyzed by running CUDA-MEMCHECK in an integrated mode to

detect the precise causes.

2.2. TotalView

TotalView4 is a symbolic debugger specifically designed for HPC applications written in

C/C++, Fortran or Python. Noteworthy are the analysis capabilities for heavily templated

C++ codes with complex data types. Advanced Memory Debugging allows to keep track of all

memory accesses and memory allocations and deallocations to find memory leaks and corrupted

memory. Another feature that sets TotalView apart from the competition is reverse debugging,

i.e. the program execution is recorded and the user can step back from the point where the

error occurred. This is especially helpful in fixing non-deterministic bugs. TotalView features

full control over processes and threads with the ability to stop and debug an individual thread or

groups of threads or processes. Debugging of CUDA [18] and OpenACC applications is supported

with the possibility to debug multiple GPUs on a single node or multiple nodes across a cluster.

Here it is possible to seamlessly set breakpoints in host and device code.

4https://totalview.io/products/totalview
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Figure 2. Debugging a matrix-multiplication kernel with TotalView

Figure 2 shows a screenshot of a CUDA debugging session using the new TotalView GUI,

which greatly improves the usability.

2.3. Arm DDT

DDT5 is another commercial debugger with a modern interface and very similar features to

TotalView. It supports all major HPC programming languages with a special focus on complex

C++ applications. Multi-process and multi-thread support is a matter of course. DDT also

features advanced memory debugging and visualizations of huge data sets. Like TotalView, DDT

supports debugging of CUDA and OpenACC applications with a fine-grained thread control, as

shown in Fig. 3. DDT is available standalone or together with the Arm profiling tools in the

Arm Forge suite6.

Figure 3. Arm DDT

5https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
6https://www.arm.com/products/development-tools/server-and-hpc/forge
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3. Performance Analysis Tools

Performance analysis tools are an integral component in the HPC software stack for decades

and many application developers were exposed to profilers to a certain degree. There are many

tools for all kinds of analyzes, some are vendor provided and thus tied to a specific platform,

some are commercial and several open source. The latter are usually developed at universities

or national research laboratories with larger supercomputers. The tools community, which has

a long history of collaboration, started adding GPU support relatively early [26], though the

programming models and amount of features supported varies significantly between tools.

Though we commonly refer to performance analysis tools as profilers, we distinguish between

trace-based tools, which store all events with timestamps and profile-based tools, which only

store statistical information like the number of calls to a specific routine and the total time

spend in that routine. Several tools can generate both profiles and traces and are thus universally

applicable.

Table 2. Performance tool compatibility matrix showing the support for GPU

programming models of several popular performance analysis tools [Status Feb. 2020]

Tool CUDA OpenACC OMPT OpenCL

NVIDIA Tools yes yes no no

ARM Tools yes no no no

Score-P yes yes prototype (no offload) yes

TAU yes yes prototype (no offload) yes

HPCToolkit yes no yes (experimental runtime) no

Extrae/Paraver yes no no yes

Tool support for the various GPU programming models varies significantly. The tool com-

patibility matrix for some of the most popular and wide-spread performance analysis tools is

shown in Tab. 2. CUDA is supported by all the tools we consider. This is partly because CUDA

was the first programming model for GPUs, but also because NVIDIA provides a very powerful

and easy to use tools interface with CUPTI. Half of the tools support OpenACC or OpenCL, so

there are options for all application developers. Several tools are working on supporting OpenMP

offload to GPUs, but there is currently no public OpenMP runtime that implements OMPT for

target directives. However, both Score-P and TAU already support OMPT on the host-side.

HPCToolkit showed a prototype with OpenMP offload support using an internal experimental

OpenMP runtime that implements OMPT for target directives.

3.1. NVIDIA Tools

NVIDIA realized early on that good tools (and a good documentation) are a necessity for a

new platform to gain traction. So NVIDA began shipping their own profiler nvvp, the NVIDIA

Visual Profiler, shortly after the release of CUDA. It is an integral feature of the CUDA tool-kit

since then, so it is available on all CUDA-enabled platforms, without the need for a third-party

tool. After several years, nvvp began to show scalability (and maintenance) issues and will

be deprecated in a future CUDA release. Luckily, two new tools, Nsight Compute and Nsight

System, are ready to fill that gap.
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3.1.1. NVIDIA Visual Profiler

For many years, nvvp [5] was the de-facto standard profiler for CUDA applications. It

presents a unified CPU and GPU timeline including CUDA API calls, memory transfers and

kernel launches. For a more detailed analysis of CPU activities, users can annotate the source

code using the NVIDIA Tools Extension (NVTX) [24]. It supports all the advanced features of

recent CUDA versions like Unified Memory, with CPU and GPU page faults and data migrations

shown in the timeline. Upon selection of a specific kernel, nvvp shows a detailed low-level kernel

analysis with performance metrics collected directly from GPU hardware counters and software

instrumentation. Nvvp can compare results across multiple sessions to verify improvements from

tuning actions. Another unique feature is an Automated or Guided Application Analysis with

graphical visualizations to help identifying optimization opportunities. The Guided Analysis

provides a step-by-step analysis and optimization guidance. The Visual Profiler is available as

Figure 4. The NVIDIA Visual Profiler showing the timeline of the application execution, a

detailed analysis of the selected kernel, and the results of the guided analysis

both a standalone application, as shown in Fig. 4 and, like NVIDIAs debugging solutions, as

part of the Nsight IDE.

3.1.2. Nsight Compute

NVIDIA Nsight Compute7 is an interactive kernel profiler for CUDA applications. It provides

similar features to nvvp’s low-level kernel analysis, i.e. detailed performance metrics and the

guided performance analysis. Nsight Compute provides a customizable and data-driven user

interface (as shown in Fig. 5) Further, it has a command-line mode for manual and automated

profiling and can be extended with analysis scripts for post-processing results. Additionally, its

baseline feature allows users to compare results directly within the tool, very much like in the

Visual Profiler.

7https://developer.nvidia.com/nsight-compute-2019 5
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Figure 5. Nsight compute showing its detailed kernel analysis with the baseline comparison

3.1.3. Nsight Systems

NVIDIA Nsight Systems8 is a system-wide timeline-based performance analysis tool. It is

designed to visualize the complete application execution help to identify the largest opportunities

to optimize, and tune to scale efficiently across any quantity or size of CPUs and GPUs. Users

will be able to identify issues, such as GPU starvation, unnecessary GPU synchronization, and

insufficient overlap with CPU computation. An example timeline is shown in Fig. 6. It is possible

to zoom in to any level of detail. Kernels showing unexpected behavior can be analyzed in detail

with Nsight Compute, launched directly from the Nsight Systems GUI. NVTX is supported to

get a more detailed picture of the CPU utilization. Currently Nsight System is focused on a

single process, with more advanced support for MPI and OpenMP planned for a future release.

3.2. ARM Tools

Arm, since the acquisition of Allinea in 2016, provides several commercial cross-platform

performance analysis tools, that can be obtained standalone or together with DDT in the Arm

Forge9 suite.

3.2.1. Performance Reports

Arm Performance Reports is a gateway to the world of performance analysis. It is a very

low-overhead tool working on unmodified optimized binaries that generates a one-page report

characterizing the application performance at a rather high level. Performance Reports analyzes

8https://developer.nvidia.com/nsight-systems
9https://www.arm.com/products/development-tools/server-and-hpc/forge
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Figure 6. Nsight Systems showing the CPU timeline at the bottom and the activity of various

CUDA stream on top

CPU utilization, MPI communication behavior, I/O and memory usage as well as accelerator

usage. For all these categories it presents three to four sub-metrics to give more detailed informa-

tion, e.g. the ratio of scalar and vector operations. For issues found, Performance Reports gives

hints on how to proceed with more sophisticated analysis tools. An example of the accelerator

breakdown of Performance Reports is shown in Fig. 7. This only gives a very brief overview of

the GPU utilization, but in this case indicates that a thorough analysis with more advanced

tools might be beneficial.

3.2.2. MAP

Arm MAP [21] is a fully featured cross-platform source level performance analysis tool. It

supports low-overhead sampling-based profiling of parallel multi-threaded C/C++, Fortran and

Python codes. MAP providing in-depth analysis and bottleneck pinpointing to the source line as

well as an analysis of communication and workload imbalance issues for MPI and multi-process

codes. For accelerators, MAP offers a detailed kernel analysis with data obtained via CUPTI.

This includes a line-level breakdown of warp stalls. Possible reasons for warp stalls include

execution and memory dependencies or barriers. Knowing the reason for warp stalls can help the

developer tuning the code accordingly. However, MAP currently supports only kernels generated

Figure 7. Performance Reports accelerator breakdown
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Figure 8. Arm MAP screenshot of a CUDA application analysis. It features the detailed warp

stall analysis next to the source code

by CUDA-C++, not those generated by OpenACC, CUDA-Fortran or OpenMP offload. Figure 8

shows an example of MAP analyzing a CUDA application.

3.3. The Score-P Ecosystem

Score-P [23] is a community instrumentation and measurement infrastructure developed

by a consortium of performance tool groups. It is the next-generation measurement system of

several tools, including Vampir [22], Scalasca [16], TAU [42] and Periscope [3]. Common data for-

mats for profiling (CUBE4) and tracing (OTF2 [14]) enable tools interoperability. Figure 9 gives

an overview of the Score-P ecosystem. On the bottom are the various supported programming

paradigms, which are implemented as independent adapters interacting with the measurement

Figure 9. The Score-P ecosystem
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system core. That eases adding support for new paradigms. The measurement data can be en-

riched with hardware counter information from PAPI [31], perf, or rusage. Score-P supports

all major GPU programming models with CUDA [26], OpenACC [8], and OpenCL [9]. OMPT

support for host-side measurement was recently added [15] and there is ongoing work to support

OpenMP target directives [7]. Score-P also features a sampling mode for low-overhead mea-

surements. It supports both profiling and tracing for all adapters. Profiles are generated in the

CUBE4 format, that can be analyzed by TAU or Cube [39].

Cube is the performance report explorer for Score-P profiles as well as for the Scalasca trace

analysis. The CUBE data model consists of a three-dimensional performance space with the

dimensions (i) performance metric, (ii) call-path, and (iii) system location. Each dimension is

represented in the GUI as a tree and shown in one of three coupled tree browsers, i.e. upon

selection of one tree item the other trees are updated. Non-leaf nodes in each tree can be

collapsed or expanded to achieve the desired level of granularity. Figure 10 shows a profile of a

simple OpenACC application Cube GUI. On the left (Fig. 10a), the results of a pure OpenACC

measurement are shown. Due to restrictions of the OpenACC tools interface, only the host-

side calls are visible. However, if Score-Ps CUDA support is enabled as well, also the kernels

generated by OpenACC get recorded (Fig. 10b).

(a) OpenACC only (b) OpenACC + CUDA

Figure 10. Screenshots of Cube showing the Score-P measurement of a simple OpenACC appli-

cation, (a) with only OpenACC enabled, showing only the host side, and (b) with OpenACC

and CUDA enabled, which additionally shows the kernels and device activity

OTF2 traces generated by Score-P can be analyzed automatically with Scalasca, which

determines patterns indicating performance bottlenecks, and manually with Vampir. Unfortu-

nately, Scalasca currently does not support the analysis of traces containing GPU locations, but

can be used to analyze the communication of multi-node heterogenous programs if the corre-

sponding adapter for the GPU programming model is disabled, i.e. only host-side events are

recorded. In contrast to traditional profile viewers, which only present aggregated values of per-

formance metrics, Vampir allows the investigation of the whole application flow. The main view

is the Master Timeline which shows the program activity over time on all processes, threads,

and accelerators. An example is shown in Fig. 11.

The Master Timeline is complemented by several other views, timelines, and tables, e.g. the

Process Timeline to display the application call stack of a process over time or a Communication

Matrix to analyze the communication between processes. Any counter metics, e.g. from PAPI

or counter plugins, can be analyzed across processes and time with either a timeline or as a

heatmap in the Performance Radar. It is possible to zoom into any level of detail, all views are

updated automatically to show the information from the selected part of the trace.
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Figure 11. Vampir screenshot of an MPI + C++11 threads + CUDA application, showing a

kernel launch on two processes in the Master Timeline. The line between the master process and

the CUDA device indicates a data transfer, the thickness of the line represents the amount of

data transferred

3.4. TAU

TAU [42] is a very portable tool-set for instrumentation, measurement and analysis of paral-

lel multi-threaded applications. It features various profiling modes as well as tracing and various

forms of code instrumentation as well as event-based sampling. All major HPC programming

languages (C/C++, Fortran, Python) and programming models (MPI, OpenMP, Pthreads) are

supported by TAU. TAU offers the widest support for accelerators, it allows measurement of

CUDA [27], OpenACC, OpenCL, Kokkos [41], and also AMDs ROCm+HIP. For the analysis

of 3-dimensional profile data, TAU includes ParaProf, which – like Cube – shows performance

metric, call-path and location for an easy and quick investigation of bottlenecks. Figure 12 shows

the visualization of a TAU trace file with Jumpshot10.

3.5. Extrae/Paraver

Extrae11 is a measurement system to generate Paraver trace files for post-mortem analysis.

It supports C/C++, Fortran, and Python programs on all major HPC platforms, i.e. Intels x86,

NVIDIA GPUs, Arm, and openPOWER. Extrae features several measurement techniques, which

are configured through an XML file. The main source of information in Extrae is preloading

shared libraries that substitutes symbols for many parallel runtimes, e.g. MPI, OpenMP and

CUDA. Extrae also support dynamic instrumentation by modification of the application binary

and parallel runtimes via Dyninst [4]. Further, Extrae supports sampling via signal timers and

hardware performance counters. Since the Paraver trace format has no predefined semantics,

adding support for new paradigms is relatively straightforward.

Paraver [37, 40] is a very flexible data browser working on the trace files generated by Extrae.

Flexible means that there is no fixed set of metrics, the metrics can be programmed in the tool

itself. Paraver offers a large selection of views, e.g. timelines, histograms, and tables, that can

10https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
11https://tools.bsc.es/extrae
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Figure 12. Jumpshot screenshot of a TAU trace measurement of a CUDA application

be combined to show virtually all the information that is present in the data. A view (or a set of

views) can be saved as a Paraver configuration and recalculated with another trace file. CUDA

streams are displayed in Paraver like any other data source, e.g. MPI processes or OpenMP

threads.

3.6. HPCToolkit

Figure 13. hpcviewer showing the profile of a CUDA application

HPCToolkit [1] is an integrated suite of tools for measurement and performance analysis of

applications at all scales. Working on unmodified, fully optimized executables, it uses sampling to

generate both call-path profiles and traces, independent of the language used. It supports multi-

process (MPI) and multi-threaded (OpenMP, Pthreads) applications, but features no collection
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or analysis of communication and I/O metrics. For GPU analysis, it supports CUDA [6] and, as

a currently unique feature, OpenMP offload by shipping an experimental OpenMP runtime that

implements OMPT for target constructs. It measures the execution time of each GPU kernel as

well as explicit and implicit data movements. For CUDA codes it uses program counter sampling

to pinpoint hotspots and to calculate the utilization of the GPU. A powerful analysis features

of HPCToolkit is the blame shifting from symptoms to causes, so the user can quickly identify

the real bottlenecks.

HPCToolkit consists of multiple programs that work together to generate a complete picture.

hpcrun collects calling-context-sensitive performance data via sampling. A binary analysis to

associate calling-context-sensitive measurements with source code structure is performed by

hpcstruct. The performance data and the structure information are combined by hpcprof

and finally visualized by hpcviewer for profiles and hpctraceviewer for traces.

Conclusion

In this paper we showed that tools can support developers in programming heterogenous

codes on current supercomputers, both in writing correct bug-free (debuggers) and efficient

(performance analysis tools) applications.

There is one point in GPU programming where tools can’t help – the decision which pro-

gramming model to use. However, regardless of the choice, there is at least some tools support

for each of the programming models. Due to the dominance of NVIDIA GPUs in today’s data-

centers, currently most developers choose CUDA or OpenACC, which are also the models with

the best tools support. To use the tools as efficient as possible we recommend for that case

to use the NVIDIA tools on a single node (with possibly multiple GPUs) when developing or

porting the application to GPUs. When scaling up, i.e. inter-node data distribution and commu-

nication becomes an issue, we recommend the usage of more sophisticated tools like Score-P or

TAU, which offer dedicated communication analysis. Errors occurring at scale can be debugged

efficiently using TotalView or DDT.

Most supercomputing centers offer support to their users in porting and tuning applications

to GPU architectures, sometimes in dedicated labs, like the JSC/NVIDIA Application Lab12.

The tools community is also actively supporting users via mailing lists and trainings, e.g. the

VI-HPS Tuning Workshops13, which offer multi-day hands-on workshops covering a range of

different tools.

So far the dominant player in GPU-enabled supercomputing is NVIDIA, but with the an-

nounced (Pre-)Exascale systems like Aurora14, which will be based on Intels Xe architecture,

and Frontier15 with purpose-build AMD GPUs, a wider variability of architectures becomes

available. We will see systems using NVIDIA GPUs and Intel, AMD, IBM POWER and even

Arm based CPUs, Intel Xeons with Xe accelerators and completely AMD-based systems with

EPYC CPUs and Radeon GPUs. Portability and maintainability of GPU applications will be-

come more important, so developers might switch to more portable programming models like

OpenMP or SYCL or even a higher-level abstraction model like Kokkos, to ensure performance

portability. Tools will have to adapt to this increased variability and provide better support for

more architectures and programming models.

12https://fz-juelich.de/ias/jsc/EN/Research/HPCTechnology/ExaScaleLabs/NVLAB/ node.html
13https://www.vi-hps.org/training/tws/tuning-workshop-series.html
14https://press3.mcs.anl.gov/aurora/
15https://www.olcf.ornl.gov/frontier/
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