
Bridging the Architecture Gap: Abstracting

Performance-Relevant Properties of Modern Server Processors

Johannes Hofmann1, Christie L. Alappat2, Georg Hager2, Dietmar Fey1,

Gerhard Wellein2

c© The Authors 2020. This paper is published with open access at SuperFri.org

We propose several improvements to the execution-cache-memory (ECM) model, an analytic

performance model for predicting single- and multicore runtime of steady-state loops on server

processors. The model is made more general by strictly differentiating between application and

machine models: an application model comprises the loop code, problem sizes, and other runtime

parameters, while a machine model is an abstraction of all performance-relevant properties of

a processor. Moreover, new first principles underlying the model’s estimates are derived from

common microarchitectural features implemented by today’s server processors to make the model

more architecture independent, thereby extending its applicability beyond Intel processors.

We introduce a generic method for determining machine models, and present results for

relevant server-processor architectures by Intel, AMD, IBM, and Marvell/Cavium. Considering

this wide range of architectures, the set of features required for adequate performance modeling

is surprisingly small.

To validate our approach, we compare performance predictions to empirical data for an

OpenMP-parallel preconditioned CG algorithm, which includes compute- and memory-bound ker-

nels. Both single- and multicore analysis shows that the model exhibits average and maximum

relative errors of 5 % and 10 %. Deviations from the model and insights gained are discussed in

detail.

Keywords: microarchitecture comparison, Intel, AMD, ARM, IBM, performance evaluation,

performance modeling, analytic modeling, execution-cache-memory model.

Introduction

The architectural differences among processor models of different vendors (and even among

models of a single vendor) lead to a diverse server-processor landscape in the high-performance

computing market. On the other hand, several analytic performance models, such as the Roofline

model [10, 25] and the execution-cache-memory (ECM) model [6, 13], show that many relevant

performance features can be described using a few key assumptions and a small set of numbers

such as bandwidths and peak execution rates. In this work we introduce a structured method of

establishing and describing those assumptions and parameters that best summarize the features

of a multicore server processor. It has satisfactory predictive power in terms of performance

modeling of (sequences of) steady-state loops with regular access patterns but is still simple

enough to be carried out with pen and paper. The overarching goal is to allow comparisons among

microarchitectures not based on benchmarks alone, which have narrow limits of generality, but

based on abstract, parameterized performance models that can be used to attribute performance

differences to one or a few parameters or features. As a consequence, reasoning about code

performance from an architectural point of view becomes rooted in a scientific process.

Main contributions

We describe an abstract workflow for predicting the runtime and performance of sequential

and parallel steady-state loops (or sequences thereof) with regular access patterns on multicore

1Friedrich-Alexander-University Erlangen-Nuremberg, Germany
2Erlangen Regional Computing Center, Germany

DOI: 10.14529/jsfi200204

54 Supercomputing Frontiers and Innovations

server CPUs. The core of the method is an abstract formulation of the ECM model, which is

currently the only analytic model capable of giving accurate single- and multicore estimates.

We show that a separation between the machine model, which contains hardware features

alone, and the application model, which comprises loop code and execution parameters, is pos-

sible with some minor exceptions.

We describe a formalized way to establish a machine model for a processor architecture and

present results for Intel Skylake SP and, for the first time, for AMD Epyc, IBM Power9, and

Marvell/Cavium ThunderX2 CPUs. The degree of data-transfer overlap in the memory hierarchy

is identified as a key parameter for the single-core in-memory performance of data-bound code.

The feasibility of the approach is demonstrated by predicting runtime and performance of a

preconditioned conjugate-gradient (PCG) solver and comparing estimates to empirical data for

all investigated processors. ECM predictions for the AMD, Cavium, and IBM CPUs have not

been published before.

Outline

This paper is structured as follows. In Section 1 we detail our testbed and methodology. Sec-

tion 2 describes, in general terms, our modeling approach including application model, machine

model, and the modeling workflow. Section 3 shows how machine models can be constructed

by analyzing data from carefully chosen microbenchmarks and gives results for the four CPU

architectures under consideration. In Section 4 we validate the model by giving runtime and

performance predictions for a PCG solver and comparing them to measurements. Finally, Sec-

tion 5 puts our work in the context of existing research and Section 5 summarizes and concludes

the paper.

1. Methodology and Testbed

In this section we point out some relevant high-level properties, while details will be discussed

later. Note that we generally take care to run the optimal instruction mix for all benchmark

kernels (i.e., using the most recent instruction sets available on the hardware at hand, with

appropriate unrolling in place to enable optimal instruction-level parallelism). Compiler pecu-

liarities are commented on where necessary. To minimize interference from the operating system,

NUMA balancing was disabled. Transparent huge pages were used by default. Measurements

were carried out on repeated loop traversals so timer resolution was not an issue. Run-to-run

variations were small (generally below 2 %) and will thus not be reported.

An overview of the investigated processors is provided in Tab. 1. The AMD Epyc 7451

(EPYC) has a hierarchical design comprising four ccNUMA nodes per socket and six cores per

domain. L3 cache segments of 8 MiB each are shared among the three cores of a core complex

(CCX). The Uncore of the processor (i.e., the L3 cache, memory interface, and other I/O

circuitry) is clocked at a fixed 2.66 GHz. Although the cores support the AVX2 instruction set,

32-byte (B) wide SIMD instructions are executed in two chunks of 16 B by only 16-B wide

hardware, so that an effective SIMD width of 16 B applies.

Although the Intel Xeon Skylake Gold 6148 (SKL) has a base core frequency of 2.4 GHz

and a wide range of Turbo settings, we fix the clock speed to 2.2 GHz in all our experiments

in order to avoid the automatic clock-speed reduction when running AVX-512 code [16]. The

AVX-512 SIMD extensions were introduced with the SKL architecture and provide 64-B wide

vector registers and execution units. The Uncore frequency is set to its nominal value of 2.4 GHz.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 55

Table 1. Key specifications of testbed machines

Microarchitecture Zen (EPYC) Skylake-SP (SKL) Vulcan (TX2) Power9 (PWR9)

Chip Model Epyc 7451 Gold 6148 ThunderX2 CN9980 8335 GTX EP0S

Supported core freqs 1.2–3.2 GHz 1.2–3.7 GHz 2.2–2.5 GHz 2.8–3.8 GHz

De-facto freq. 2.3 GHz 2.2 GHz 2.2 GHz 3.1 GHz

Supported Uncore freqs 2.66 GHz 1.2–2.4 GHz 1.1 GHz N/A

Cores/Threads 24/48 20/40 32/256 22/88

SIMD extensions AVX2 AVX-512 NEON VSX-3

L1 cache capacity 24×32 KiB 20×32 KiB 32×32 KiB 22×32 KiB

L2 cache capacity 24×512 KiB 20×1 MiB 32×256 KiB 11×512 KiB

L3 cache capacity 8×8 MiB 27.5 MiB 32 MiB 110 MiB

Memory Configuration 8 ch. DDR4-2666 6 ch. DDR4-2666 8 ch. DDR4-2400 8 ch. DDR4-2666

Theor. Mem. Bandwidth 170.6 GB/s 128.0 GB/s 153.6 GB/s 170.6 GB/s

These choices are not a limitation of generality since all procedures described in this work can

be carried out for any clock-speed setting. SKL also features a boot-time configuration option

of sub-NUMA clustering (SNC), which splits the 20-core chip into two ccNUMA nodes, each

comprising ten cores (while the full L3 is still available to all cores). This improves memory-

access characteristics and is thus a recommended operating mode for HPC in our opinion. The

last-level cache (LLC) prefetcher was turned on for the same reason.

The Cavium/Marvell ThunderX2 CN9980 (TX2) implements the ARMv8.1 ISA with 128-

bit NEON SIMD extensions that support double-precision floating-point arithmetic for a peak

performance of two 16-B wide FMA instructions per cycle and core. The 32-core chip runs at a

fixed 2.2 GHz clock speed, while the L3 cache runs at half the core speed. The victim L3 cache

is organized in 2 MiB slices but shared among all cores of the chip.

The Power9 processor used for our investigations is part of an IBM 8336 GTX data

analytics/AI node. Being an implementation of the Power ISA v3.0, the core supports VSX-

3 SIMD instructions, corresponding to 16-B wide vector registers. A 512 KiB L2 cache is shared

between each pair of cores. The victim L3 cache is segmented, with eleven slices of 10 MiB each,

and each slice can act as a victim cache for others [20].

High-level language code for both the Intel and AMD processors was compiled with the

Intel C compiler (version 19.0 update 2). On the Marvell and IBM processors the ARM clang

(version 19) and the IBM XL C (version 16.1.0) compilers were used, respectively. To get the

compiler generate an appropriate instruction mix, the -O3, -xHost, -mavx2, and -mavx com-

piler flags are required for the AMD Epyc processor. For the Intel Skylake processor, the -O3,

-xCORE-AVX512, and -qopt-zmm-usage=high flags were used. For the Marvell TX2 processor,

the -Ofast and -mtune=native flag were employed. Finally, for the IBM Power9 processor,

the -O5, -qarch=pwr9, and -qsimd=auto flags were used.

Note that the particular choice of compilers was to some extent arbitrary, because it is

not our intention to provide a comprehensive compiler comparison. It must be understood that

compilers may fail to produce “optimal” code for a loop, but modeling procedures like the one

we show here can be used to pinpoint such deficiencies.

The likwid suite [5] version 4.3.3 was used in several contexts: likwid-pin for thread-core

affinity, likwid-perfctr for counting hardware performance events, and likwid-bench for low-

level loop benchmarking (with customized kernels for TX2 and PWR9). Instruction latency and

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

56 Supercomputing Frontiers and Innovations

throughput were measured using the ibench tool [11]. Where compiled code was required, we

used the compiler versions and flags indicated in Tab. 1.

2. Modeling Approach

Just like the Roofline model, the ECM model is an analytic performance model for streaming

loop kernels with regular data-access patterns and a uniform amount of work per loop iteration.

Unlike Roofline, however, ECM favors an analytic approach. As a result, the model can give

single- and multicore estimates with high accuracy without relying on a large number of mea-

surements. Moreover, the analytic nature enables the evaluation of different hypotheses with

respect to a processor’s performance behavior by investigating which of them lead to a model

that best describes empirical performance, thereby enabling deeper insights than measurement-

based approaches such as Roofline. See Section 5 for a more thorough comparison of the models

and their predictive powers.

Two major shortcomings of the ECM model concern its loose formulation and the resulting

lack of portability: in its current form, the model mixes general first principles and Intel-specific

microarchitectural behavior into a set of rules that make it difficult to apply it to other processors.

In the following, we untangle the original model: First, several truly general (i.e., microarchitec-

ture-independent) first principles and their rationales are laid out. Next, application and machine

models that address code- and microarchitecture-specific properties are covered (in addition, we

provide general instructions on how to determine machine models for new microarchitectures in

Section 3). Finally, the workflow of the new model is demonstrated.

2.1. Model Assumptions

The model assumes that the single-core runtime is composed of different runtime compo-

nents. These include the time required to execute instructions in the core (Tcore) and the runtime

contributions that result from carrying out the necessary data transfers in the memory hierarchy

(e.g., TRegL1 the time to transfer data between the register file and the L1 cache, TL1L2 for L1-

L2 transfers, and so on). Depending on the architecture, some or all of these components may

overlap. The single-core runtime estimate is therefore derived from the runtime components by

putting them together according to the architecture’s overlap capabilities.

If no shared resources are involved, single-core performance is assumed to scale linearly with

the number of active cores for the multicore estimate. In practice, however, at least one shared

resource (the memory interface) will be involved. The model takes conflicts on shared resources

into account by modeling contention and the resulting waiting times in an analytical way. In

the following, some particularities of modern server processors that simplify runtime modeling

are discussed.

Today’s server processors typically feature superscalar, out-of-order cores that support spec-

ulative execution and implement pipelined execution units. Figure 1 shows the execution of

instructions corresponding to a simple vector sum (C[i]=A[i]+B[i]) for a data set in the L1

cache on a hypothetical core. The core has a two-cycle latency for add and load instructions.

When the loop begins execution, each of the two load units can execute a load instruction.

Since there is a two-cycle load latency, inputs for the add instruction will only be available

after two cycles. However, due to speculative execution, the core can continue to execute two

load instructions from the next loop iterations in each cycle. Once input data is available, the

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 57

LOAD

UNIT

1

2

t [cy]

0

LOAD

UNIT

A[0]+B[0]
3

4

5

6

L1 load

latency

ADD

UNIT

STORE

UNIT

A[0] B[0]

A[1] B[1]

A[2] B[2]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

A[1]+B[1]

A[2]+B[2]

A[3]+B[3]

A[4]+B[4]

A[0]+B[0]

add

latency

A[1]+B[1]

A[2]+B[2]

Figure 1. Loop execution on a hypothetical core with load and add latencies of two cycles each

core can begin executing an add instruction in each cycle. Eventually, after another two-cycle

latency (that of the add instruction), the core can begin executing a store instruction in each

cycle. Once this latency-induced wind-up phase of four cycles is complete, instruction latency no

longer impacts runtime; instead, the runtime is determined by the throughput of instructions.

Although latencies might be higher on real processors, the wind-up phase can be neglected even

for short loops with only hundreds of iterations. This leads to one of the key assumptions of the

ECM model: in the absence of loop-carried dependencies and data-access delays from beyond

the L1 data cache, the runtime of a single loop iteration can be approximated by the time that

is required to retire the instructions of a loop iteration. With loop-carried dependencies in place,

the inter-iteration critical path is a good estimate of the runtime. Due to speculative execution,

load/store instructions are decoupled from the arithmetic instructions of a particular loop iter-

ation. This leads to the further assumption that the time to retire arithmetic instructions and

the time to retire load/store instructions can overlap.

(a) (b)

Figure 2. (a) Inter-cache data transfers for a design with more than two buffers to track out-

standing cache-line (CL) transfers; (b) design with only two buffers

The next set of assumptions concerns data transfers in the memory hierarchy. The rela-

tionship between latency and bandwidth is well understood, so most designs typically provide a

sufficient number of buffers to track outstanding cache-line transfers to allow for the saturation

of the data-transfer link between adjacent cache levels. Figure 2a shows such a design with more

than two buffers to track outstanding transfers to hide a two-cycle latency. Sometimes, however,

the number of buffers is insufficient, leading to a deterioration of bandwidth. Figure 2b shows a

variant with only two buffers: after two cycles, no more transfer-tracking buffers are available,

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

58 Supercomputing Frontiers and Innovations

which prevents the initiation of new transfers. Only after a previous transfer completes and the

buffer tracking this transfer is freed can a new transfer request be initiated. As a result, the

data link is idle for one cycle, reducing the attainable bandwidth in practice to two-thirds of the

theoretical value. On some of the investigated processors this problem can be observed for trans-

fers between the LLC and main memory. This can be attributed to significant latencies caused

by the increasingly complex on-chip networks required to accommodate the growing number of

cores of modern CPUs.

The model assumes that data links can typically be fully saturated because a sufficient

amount of buffers are available and adequate prefetching (be it hardware, software, or both)

results in full utilization of these buffers. As a result, runtime contributions of data transfers

can typically be calculated by dividing data volumes by the theoretical bandwidths of the cor-

responding links; the model does, however, include an optional latency penalty to cover edge

cases such as the one shown in Fig. 2b. Therefore, the runtime contribution of data transfers

between memory hierarchy levels i and j is the sum of the actual data transfer time and an

optional latency penalty: Tij = T data
ij + T p

ij .

2.2. Application Model

An application model condenses all of the code-related information required to give runtime

estimates for a particular loop.

It comprises all operations carried out during one loop iteration as well as parameters that

influence data transfers in the memory hierarchy. Most prominently, the latter includes the data-

set size(s), which determine in which level of the memory hierarchy data resides, yet it may also

cover information about blocking size(s) and the scheduling strategy.

2.3. Machine Model

Machine models comprise selected key information about processors. Despite being limited

to few architectural properties, the data included in machine models is sufficient to give mean-

ingful performance estimates. With respect to scope, the contents of machine models can be

separated into two parts: the execution capabilities of cores, and details about the memory

hierarchy. In the following, each of the two components is discussed in detail.

The part concerning in-core execution capabilities deals with the cores’ properties that deter-

mine the runtime contribution of instruction execution. As discussed in Section 2.1, throughput

is a key determinant for single-core runtime, so throughput limits (in operations per cycle) of

relevant operations are included. To address loop-carried dependencies, latencies for the cor-

responding instructions must be included. Moreover, the machine model includes information

about potential bottlenecks that limit operation throughput: On most architectures, different

functional units share the same execution port, which implies that operations associated with

units served by the same port cannot cannot begin execution in the same cycle. Finally, most

modern core designs have some architectural deficiency that prevents them from fully utilizing

the core’s load/store units3.

3Most modern cores feature one store and two load units but only have two address-generation units (AGUs),

which means that in each cycle only two of the three load/store units can be supplied with memory addresses if

complex addressing modes (e.g., base plus scaled offset) are used. In addition to the two-AGU shortcoming, the

EPYC’s cores have only two data paths between the register file and the L1 cache.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 59

loop instructions

application model

instruction-execution

capabilities

memory hierarchy

bandwidth and latency

single-core prediction

 estimates for di!erent

data-set sizes

 P
ECM

, P
ECM

, P
ECM

,…
 core

runtime contributions

instruction-execution

estimates T
comp

 and T
RegL1

data-transfer-time

estimates T
L1L2

, T
L2L3

, …tra"c estimates for

adjacent cache levels

v
L1L2

, v
L2L3

, …

 L2 L3

inputs intermediate predictions final predictions

multi-core prediction

estimates for di!erent

data-set sizes and

core counts P
ECM

(n),…
 Mem

1

2

3

4

machine model

overlap properties

memory hierarchy org.

problem size, etc.

Figure 3. Overview of the performance prediction workflow, including application model, ma-

chine model, and runtime contributions

The second part of the machine model covers information about the cache hierarchy. This

entails everything needed to calculate the volume of data transfers for a loop: the number

of cache levels, their effective4 sizes, write-through vs. write-back policy, victim/exclusive vs.

inclusive, etc. For example, a victim cache typically implies additional traffic since it receives

both modified and unmodified cache lines (CLs) from the overlying cache, whereas a non-victim

cache only receives modified CLs. In order to get from data volumes to runtime contributions

of individual data paths, the machine model also requires data about the available bandwidth

between adjacent caches, and whether transfers take place over a single bi-directional link or

over two uni-directional links. Moreover, if an architecture provides an inadequate number of

buffers to track outstanding transfers, the corresponding latency penalties must be included.

Finally, the second part of the machine model contains a description of which transfers in the

memory hierarchy can occur simultaneously5.

2.4. Performance Prediction Workflow

An overview of the performance-prediction workflow is provided in Fig. 3. As indicated

in the figure, the process can be divided into four steps: first, the runtime contribution of

performing operations in the core (with all data coming from L1) is determined. Next, the

runtime contributions of data transfers in the memory hierarchy are calculated (to this end,

data transfer volumes in the memory hierarchy need to be determined). In a third step, the

previously determined runtime contributions are put together to arrive at a single-core runtime

estimate. Finally, based on the single-core estimate from the previous step, multicore predictions

can be given. In the following, each of the steps is discussed in detail.

4For several reasons (imperfect cache replacement strategies, prefetchers preempting data that could have other-

wise been reused, etc.) the effective capacity of a cache is lower than its nominal size. In practice, the heuristic of

halving the theoretical cache size delivers good estimates for the effective size.
5As will be demonstrated later, we find that in practice, this rarely discussed architectural feature turns out to be

much more important for single-core in-memory performance than other more prominent features such as SIMD

width or cache bandwidths.

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

60 Supercomputing Frontiers and Innovations

2.4.1. Contributions of instruction execution in the core

The fact that some architectures cannot overlap data transfers between the register file and

the L1 cache on one hand and the L1 and L2 caches on the other makes it necessary to separate

the runtime contribution of operations into two components: Tcomp, which are cycles in which

no data transfers between registers and L1 cache occur, and TRegL1, which are cycles in which at

least one load or store operation retires. Unless otherwise indicated, all arithmetic and load-store

operations handle double-precision floating-point operands.

To estimate TRegL1, first the numbers of load and store operations (nld and nst) are de-

termined by counting their occurrences in the loop body; the numbers are then divided by the

respective throughputs, τld and τst, taking additional constraints specified in the machine model

into account (e.g., a limited throughput for the overall number of load/store operations per cy-

cle, τld/st, caused by a limited number of AGUs). The corresponding runtime contribution is

the maximum of all components:

TRegL1 = max

(
nld
τld

,
nst
τst

,
nld + nst
τld/st

)
. (1)

The number of cycles in which no load/store operations are carried out is determined in a

similar way: operation counts are found in the loop body. Each count is then divided by the

operation’s throughput documented in the machine model. As before, additional constraints

have to be considered: For example, execution-port conflicts (cf. Section 2.3) can be addressed

by summing up the contributions of functional units that share the same execution port (this is

demonstrated in the equation below, where mul and div units are assumed to be assigned to

the same execution port). The fact that cores have an upper limit to the number of instructions

they can retire per cycle can be modeled by dividing the total number of operations by a cor-

responding instruction-throughput limit τtotal. Finally, loop-carried dependencies are accounted

for by including the contribution of the longest cross-iteration dependency chain, Tdep, when

determining the overall runtime by applying the maximum to all individual contributions:

Tcomp = max

(
nadd
τadd

,
nmul
τmul

+
ndiv
τdiv

, . . . ,

∑
i ni

τtotal
, Tdep

)
. (2)

2.4.2. Contributions of data transfers in the memory hierarchy

Before the runtime contributions of data transfers can be determined, the data volumes

transferred over the various data paths in the memory hierarchy need to be established. To

this end, the location of the data set(s) in the memory hierarchy is derived from the data-set

size(s) specified in the application model. Then, the load/store operations documented in the

application model are revisited: for each operation, the corresponding data set is identified, and

the transfers required to get the data from its current location in the memory hierarchy to the L1

cache are recorded. Along with the required transfers, the data volume is determined (e.g., four

bytes per single- or eight bytes per double-precision floating-point number). Note that full CL

transfers need to be taken into account even when CLs are only partially read or written (e.g.,

for strided but regular access). In case of truly random access patterns, latency contributions

will dominate. This case is not part of the ECM model yet, although it is possible to incorporate

it in a phenomenological way [2]. Extending the analytic model towards random accesses is part

of future work.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 61

Note that determining data-transfer volumes requires keeping track of previous data accesses

to detect possible data reuse. While this can be done manually for kernels with simple data-access

patterns, analysis of complex patterns is best left to cache simulators (e.g., pycachesim [8]). To

this end, per-loop traffic estimates from cache simulators can be used as inputs in Eq. 3. If

necessary, the resulting numbers can be validated by measuring the actual data volumes using

hardware performance events (e.g., with papi [23] or likwid [5]).

Once the data volumes have been established, the runtime contribution Tij of data transfers

between levels i and j of the memory hierarchy can be calculated:

Tij = max/sum

(
vi→j
bi→j

,
vi←j
bi←j

)
+ T p

ij = T data
ij + T p

ij . (3)

The process works by first calculating the time the data link(s) connecting levels i and j are

actually busy transferring data. To calculate this data-link busy time, T data
ij , the data volumes,

v, transferred in each direction are divided by the bandwidth, b, of the link over which the data

is transferred. The two directional components Ti→j and Ti←j are then combined according to

the information provided in the machine model. If there is a single bi-directional link over which

transfers in both directions take place, the combined data-link busy time is the sum of both

contributions. If there are two dedicated uni-directional links over which the transfers can take

place, the overall data-link busy time is the maximum of both contributions. The overall data-

transfer time, Tij , is given by the sum of the previously determined data-link busy time and (if

applicable) the corresponding latency penalty specified in the machine model.

2.4.3. Combination of runtime contributions for single-core estimate

To arrive at a single-core runtime prediction, the previously determined components are

put together according to the overlap capabilities specified in the machine model. To this end,

first, all non-overlapping components are added up. The result is then included in the set of

overlapping components, and the total runtime estimate is the maximum of the resulting set:

T = max

(overlapping︷ ︸︸ ︷
T..., · · · , T...,

non-overlapping︷ ︸︸ ︷
T... + · · ·+ T...

)
. (4)

The following example will clarify the process: when discussing the model assumptions in

Section 2.1, it was established that Tcomp and TRegL1 overlap on all processors. Let us further

assume that the architecture under consideration has a multi-ported L1 cache, which enables

the cache to simultaneously communicate with the register file and the L2 cache. Assuming no

overlap of other transfers, the runtime estimate for an in-memory data set on this processor

would be T = max(Tcomp, TRegL1, TL1L2, TL2L3 + TL3Mem).

The runtime estimate T can be converted into a performance estimate P by dividing the

amount of work W carried out in one loop iteration by the runtime estimate for the same, and

multiplying the result with the core frequency: P = fcore ·W/T .

For our investigations fcore was fixed, so converting from runtime to performance estimates

is trivial. In practice, however, fcore is often set dynamically on the authority of the operating

system, the processor, or even the user. However, fcore is virtually constant during the execution

of a particular steady-state loop. This is because the metric used by the underlying mechanism

(e.g., DVFS) to select fcore does not change while the processor is in a steady state. For a

particular kernel, fcore can thus be measured via hardware performance events. For each kernel of

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

62 Supercomputing Frontiers and Innovations

a multi-loop application, fcore value must be determined individually. See [13] for an investigation

of the model’s ability to deal with different core and Uncore frequencies.

2.4.4. Multicore prediction based on single-core estimate

Multicore estimates require as inputs the single-core runtime estimate T , and the time the

memory interface is busy transferring data T data
Mem, which is the sum of all data-link busy times

that involve the main memory (e.g., in a memory hierarchy with a victim L3 cache, where

memory sends data to L2 and receives modified CLs from L3, T data
Mem = T data

L2Mem + T data
L3Mem).

In the absence of shared resources (e.g., if the entire data set fits into core-private or scalable6

shared caches), single-core performance P is expected to scale linearly with the number of active

cores n, so the multicore estimate for n active cores is just P (n) = nP . If shared resources, such

as the main memory interface, are involved, resource conflicts and the resulting waiting times

must be considered. Here we employ a statistical model that is motivated by first principles:

the utilization of the memory bus u is the probability of another core encountering a busy bus.

For a single core, the utilization is given by the ratio of the time the memory interface is busy

transferring data and the overall runtime estimate: u(1) = T data
Mem/T . If multiple cores are active,

the utilization is expressed recursively:

u(n) = min

(
1,

nTMem

max(Tcomp, . . . , TMem + u(n− 1)(n− 1)p0)︸ ︷︷ ︸
Tconf

)
. (5)

In the numerator, the memory-bus busy time is multiplied with the number of active cores,

n, since multiple cores are using the memory interface. The denominator is the expanded ex-

pression for the runtime estimate, T , where a conflict time has been added to the data-transfer

time involving the memory interface. This conflict time represents the average time that a core

encountering a busy memory bus has to wait for the bus to become available to it. The conflict

time encountered in a scenario with n active cores is given by multiplying the probability of a

core hitting a busy memory bus, which corresponds to the memory utilization of the remaining

cores, u(n − 1), with the time the other n − 1 cores are using the interface. This results in

Tconf = u(n− 1)(n− 1)p0, with p0 being an empirical fit parameter7.

For performance estimates, the memory-bus utilization is multiplied with the performance

to be expected with fully saturated bandwidth: P (n) = u(n)P Sat. The memory-saturation

performance, P Sat, corresponds to the bandwidth limitation of the Roofline model and is deter-

mined by dividing the amount of work per loop iteration by the memory-bus busy time, and

multiplying the result with the core frequency: P Sat = W/TMem · fcore.

3. Machine Model Construction

3.1. Method to Determine Machine Models

In the ideal case, all of the data required for a machine model would be available in ven-

dor data sheets. In practice, however, this is rarely the case because important information is

6Scalable means a parallel efficiency close to one for all relevant degrees of parallelization (i.e., up the maximum

number of cores sharing the cache).
7Although p0 can also be modeled analytically employing the data used to derive TMem, we find that the level of

detail required to reliably estimate the parameter outweighs the benefits of using an analytical approach.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 63

deemed irrelevant or, more likely, intellectual property and therefore omitted from specifications.

Moreover, the interaction of different parts of the processor might lead to situations in which

vendor-specified numbers are not attainable (see, e.g., the discussion on load/store throughput

in Section 2.3). In the following, a method is presented that allows to establish machine models

in cases where relevant information is missing, or the documented specifications turn out to be

impractical for some reason.

3.1.1. Instruction throughput and latency

At fixed core clock speed fcore, the time t it takes the core to execute a large number n

of independent8 instructions of type i is measured. The throughput of the instruction is then

ωi = n/(tfcore). Since we will usually use a work unit of one (high-level) loop iteration in the

modeling procedure, the instruction throughput is multiplied by the appropriate SIMD width

wsimd to get the operation throughput :

τi = wsimd × ωi = wsimd × n/(tfcore). (6)

To measure latency, an artificial data-dependency chain is introduced by making each in-

struction use the output of the previous instruction as its input. This forces each new instructions

to be held at a reservation station until the previous instruction has completed. The holding

time, Λ = n/(tfcore), corresponds to the instruction’s latency. The measured instruction latency

is divided by the appropriate SIMD width to get the operation latency :

λi = Λi/wsimd = n/(tfcorewsimd). (7)

While implementing these two strategies sounds simple in theory, deriving a suitable in-

struction mix from a high-level language implementation can be difficult in practice because

compiler optimizations get in the way. We solve this problem by side-stepping the compiler and

hand-crafting the necessary code in assembly language. To automate the process of determining

latencies and throughputs, the ibench tool [11] was developed, which comprises a measurement

framework and a number of assembly-code files for the most widespread instructions of AMD,

IBM, ARM, and Intel processors.

3.1.2. Topology and data flow in the memory hierarchy

Information about the topology of the memory hierarchy, such as the number of caches,

their sizes and properties (write-back vs. -through, victim vs. non-victim) are often well doc-

umented in vendor data sheets. Even if this is not the case, the data is easy to obtain, for

most processors provide access to it over a well-defined interface. In case of x86, for instance,

the cpuid instruction can be used to extract detailed information about the memory hierarchy,

including the capacity, associativity, number of sets, inclusiveness, cache-line size, and more for

each level in the hierarchy. Other processors offer similar mechanisms, and the Linux sysfs file

system provides an architecture-independent interface to obtain the necessary data.

Information about data flow (i.e., the path data takes from a particular level in the memory

hierarchy to reach a core’s L1 cache) can be derived from the topology information. In most cases,

only stores require special attention to determine whether store-misses trigger a write-allocate

8Independent means that there are no data dependencies between the different instances of the instruction.

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

64 Supercomputing Frontiers and Innovations

for the missed CL or if some optimization (as the one implemented in Marvell’s ThunderX2)

detects whether a full CL is written to avoid the write-allocate. Such details can be derived

with the help of hardware performance events, which can be used to record the data volumes

exchanged between different levels of the memory hierarchy.

3.1.3. Bandwidth, latency, and overlap in the memory hierarchy

Typically, cache bandwidths are well-documented by vendors. In some cases, however, ven-

dors only specify bandwidths for selected caches. In these instances, cache bandwidths can be

determined by selecting a set of reasonable bandwidth candidates (e.g., 16, 32, and 64 B/cy),

and examining which of the corresponding estimates best agrees with empirical data. To the

best of our knowledge, no vendor publishes data on the overlap properties of their processors’

memory hierarchies, so this data needs to be determined in a similar way.

The process of comparing estimates to empirical data is iterative: once the bandwidth and

overlap properties for a particular memory level have been established, the numbers can be

used as input for different bandwidth and overlap assumptions in the next memory level. In

the following, the process is demonstrated on the SKL processor for the well-known stream

triad [17].

(a) L1 (b) L2

(c) L3 (d) Main memory

Figure 4. Comparison of model estimates to empirical data for the stream triad on SKL for

data sets in (a) L1, (b) L2, and (c) L3 caches, and (d) main memory

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 65

On the SKL processor, one loop iteration of the stream triad (A[i]=B[i]+s*C[i]) com-

prises two loads (one from each of the input arrays B and C), one fused multiply-add (FMA) (to

calculate the result), and one store (to write the result to the output array A). Using ibench,

the following operation throughputs were established: τfma = 16/cy, τld = 16/cy, τst = 8/cy,

and τld/st = 16/cy. According to Equations (1), (2), and (4), for a data set in the L1 cache this

leads to a single-iteration runtime estimate of

TL1 = max

(
Tcomp︷ ︸︸ ︷

1 fma/it

16 fma/cy
,

TRegL1︷ ︸︸ ︷
2 ld/it

16 ld/cy
,

1 st/it

8 st/cy
,

3 ld/st/it

16 ld/st/cy

)

≈ 0.19 cy/it.

In Fig. 4a we compare this prediction to measurements. Note that the estimate corresponds

to the lower limit of runtime, which is actually attained by the running code if the loop is long

enough.

If the data set resides in the L2 cache, a total of 32 B are transferred between the L1 and

L2 caches per iteration: 8 B for each of the double-precision floating-point numbers from the

input arrays B and C, 8 B for the write-allocate to A, and 8 B for evicting the updated element

of A to the L2 cache. Bandwidth assumptions of 16, 32, and 64 B/cy yield estimates for TL1L2 of

two, one, and one-half cycle, respectively. Figure 4b compares the estimates to empirical data.

The assumptions of no overlap and a bandwidth of 64 B/cy match the measurements strikingly

well; incidentally, the L1-L2 cache bandwidth as advertised by Intel is also 64 B/cy. With L1-L2

cache bandwidth and overlap properties established, we can move on to the L3 cache. The data

exchanged between the L2 and L3 caches is 48 B because each of the three eight-byte reads

from L3 (two from the input arrays B and C, one write-allocate from the target array A) triggers

the eviction of data replaced in the L2 cache to the victim L3. L2-L3 bandwidth assumptions

of 16, 32, and 64 B/cy yield estimates for TL2L3 of 3, 1.5, and 0.75 cy, respectively. Figure 4c

compares estimates derived from the different bandwidth and overlap assumptions to empirical

data for a data set in the L3 cache. In this case we find that that assumptions of no overlap

and a bandwidth of 32 B/cy agree very well with the measurement. Finally, for in-memory data

sets, only different overlap assumptions must be made, since the sustained memory bandwidth

is determined by measurement (55 GB/s for one SNC domain, which for fcore = 2.2 GHz is

25 B/cy). Figure 4d compares the resulting estimates to empirical data (black line) and we find

that in memory, too, no overlap of data transfers occurs.

In addition to runtime measurements obtained with SNC mode and the LLC prefetcher (PF)

enabled, Fig. 4d also shows data where these features were disabled. This is to demonstrate that

in some settings, bandwidth and overlap are not sufficient to describe the empirical behavior

in a satisfying manner. Then, a latency penalty must be added to data transfer times (see

Section 2.1).

3.2. Results for Investigated Processors

Table 2 shows the machine models that result from applying the previously introduced

method to the processors from the testbed.

The upper part of the table lists relevant operation throughput (τ) and instruction latency

(λ) values. The center part lists bandwidths and latency penalties (if applicable) in the memory

hierarchy. Note that in cases where two numbers are provided (e.g., 64+16 B/cy for PWR9’s L1-

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

66 Supercomputing Frontiers and Innovations

Table 2. Machine models determined for the investigated processors

Microarchitecture Skylake-SP (SKL) Zen (EPYC) Vulcan (TX2) Power9 (PWR9)

τadd, τmul, τfma [/cy] 16, 16, 16 4, 4, 4 4, 4, 4 4, 4, 4

τld, τst, τld/st [/cy] 16, 8, 16 4, 2, 4 4, 2, 4 4, 4, 4

λadd, λmul, λfma 0.5, 0.5, 0.5 1.5, 2, 2.5 3, 3, 3 3, 3, 3

bL1↔L2 64 B/cy 32+32 B/cy 64 B/cy 64+16 B/cy

bL2↔L3 32 B/cy 32 B/cy 32 B/cy 32 B/cy

b∗↔Mem 25–28 B/cy 13–16 B/cy 47–56 B/cy 41–45 B/cy

Data-transfer penalties — — — T p
Mem = 0.04 cy/B

Non-overlapping all L2-L3, all (if Mem L2-Mem,

transfers L2-Mem, involved) L3-Mem

L3-Mem

Write-through/ Victim L3 Victim L3 Victim L3 Write-through L1,

victim caches Victim L3

L2 bandwidth), two uni-directional data paths exist between the caches. In such instances, the

first number corresponds to the bandwidth of sending data from the underlying to the overlying

cache, and second number to the bandwidth in the opposite direction. Note that listed memory

bandwidth corresponds to that of a single NUMA node (SNC node on SKL, Zeppelin on EPYC,

full-chip on TX2 and PWR9). Memory bandwidths are specified as ranges, since different data-

access patterns exhibit slightly varying sustained memory bandwidths. The last part of the table

contains overlap capabilities and additional information on cache types.

4. Case Study: PCG

We use a matrix-free PCG solver to demonstrate the viability of our approach in real-world

scenarios. The solver is preconditioned using the well-known symmetric Gauss-Seidel iteration

and relies on the second-order finite-difference method for discretization. We use it to solve the

steady-state heat equation in 2D. The sparse matrix entries are not stored explicitly but hard-

coded into a 2D five-point stencil representation. Hence, the solver is similar to the well-known

HPCG but shows a more interesting phenomenology: as opposed to HPCG, where all loops are

limited by data transfers due to explicit matrix storage, our preconditioner is bound by in-core

pipeline hazards. All computations and data storage are in double precision.

Algorithm 1 shows the entire PCG method. It is composed of a matrix-free sparse-matrix-

vector multiplication (SpMVM) which we refer to as stencil, a symmetric Gauss-Seidel pre-

conditioner (gs), and three BLAS-1 routines: dot product, vector norm, and daxpby. The

code is implemented in C++ and parallelized with OpenMP. The Gauss-Seidel kernels, which

have loop-carried dependencies, are parallelized using a well-known wavefront technique that

preserves the numerical behavior of the serial code [7]. The preconditioner can be vectorized by,

e.g., coloring methods, but this would alter the convergence and render the loops data bound,

which is not the scenario we want to showcase (see above).

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 67

Algorithm 1 PCG algorithm: solve for x : Ax = b

1: r = b−Ax
2: rnorm = 〈r, r〉
3: p = z = Pr

4: α0 = 〈r, z〉
5: i = 0

6: while (i < niter) && (rnorm > ε2) do

7: v = Ap stencil operation (SpMVM)

8: λ = α0

〈v,p〉 dot

9: x = x+ λp daxpby

10: r = r − λv daxpby

11: rnorm = 〈r, r〉 norm

12: z = Pr gs preconditioner

13: α1 = 〈r, z〉 dot

14: p = z + α1

α0
p daxpby

15: α0 = α1

16: i = i+ 1

Algorithm 2 High-level representation of stencil

1: for j = 1 : nj − 1 do

2: for i = 1 : ni − 1 do

3: vj,i = wcpj,i + wy(pj−1,i + pj+1,i) + wx(pj,i−1 + pj,i+1)

4.1. Application Models

The total problem size (ni × nj) was chosen to be ni = 25000 (inner, leading dimension)

and nj = 2000 (outer dimension), so that all arrays reside in main memory. In the following,

application models for all of the PCG components are presented.

Features important for the considered example include the number of loads and stores,

floating-point operations, and loop structures. For simple streaming loops, all of these details

can be derived from high-level code. The daxpby kernel (y[i]=a*x[i]+b*y[i]) entails two

loads, one FMA, one multiplication, and one store. The dot product (d+=x[i]*y[i]) and norm

(n+=x[i]*x[i]) have two and one load(s), respectively, along with an FMA. These kernels can

be fully and effectively vectorized by all compilers.

For kernels with cache reuse such as stencil and gs, reuse-distance analysis (best done using

the layer condition [3, 22]), blocking factors, parallelization strategies, and scheduling techniques

have to be taken into account. The stencil kernel is shown in Algorithm 2, with w∗ representing

different weights obtained from the matrix A. The kernel requires two FMAs, two additions,

one multiplication, one store, and five load operations. SIMD vectorization is straightforward,

but in contrast to the BLAS kernels, different loads can hit different memory hierarchy levels

depending on the reuse distance. For the considered inner dimension of ni = 25000 and outer

(j) loop parallelization employed in our code, the layer condition would require 4ni elements

per thread to fit in a cache. The lowest (i.e., outermost) cache that satisfies this criterion will

only have a miss for one of the four elements on the right-hand side, while the cache levels

above it will have three. On all processors under investigation, the layer condition is satisfied

in the last-level cache (LLC). Changing the inner problem dimension would certainly change

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

68 Supercomputing Frontiers and Innovations

Algorithm 3 High-level representation of gs forward sweep

1: for j = 1 : nj − 1 do

2: for i = 1 : ni − 1 do

3: zj,i = wc(rj,i + wyzj−1,i + wxzj,i−1)

LOAD rj,i

wy

LOAD zj−1,i

FMA

FMA

wx

zj,i−1

MUL

wc

STORE zj,i

Figure 5. Dependency chain of the gs forward kernel when using the Intel compiler. Critical

path shown in gray

the prediction; the ECM model has been demonstrated to yield accurate results in all these

cases [14, 22], so we restrict ourselves to a single size only here. Storing to v implies a write-

allocate through the whole memory hierarchy on all processors, and, at some point, the writing

back of the newly-computed data to memory.

The gs kernel is a symmetric operator comprising a forward and a backward sweep. The

forward sweep (gsf) is shown in Algorithm 3, and requires two FMAs, one multiplication, one

store, and three load operations. The kernel is similar to stencil, but it reads from zj,i−1 and

writes to zj,i, causing a loop-carried dependency. A wavefront technique can be used to parallelize

the kernel [7], and the corresponding layer-condition criterion requires 3ni elements to fit in a

cache. The outermost cache that satisfies this condition will have only two load misses on the

right-hand side, while the others would have three. The gs backward sweep (not shown here for

brevity) is similar, but loops are traversed in reverse direction and wcrj,i in gsf is replaced with

zj,i. The analysis of the kernel follows the same approach, but there is one less load miss.

Both gs loops have loop-carried dependencies, preventing SIMD vectorization. As a result,

a critical path analysis is required. In gsf the element zj,i written in a particular iteration is

read in the next as zj,i−1. The actual delay caused by this dependency can vary depending on

the code generated by the compiler. Figure 5 shows the result when using the Intel compiler and

the critical path of the generated instruction mix includes one FMA and one multiplication. The

ARM clang compiler produces code that does not keep zj,i in a register across loop iterations,

leading to an extra delay caused by storing and loading the element. Due to its particular

unrolling strategy, IBM’s xlc compiler generates a combination of the two previous variants.

4.2. Runtime Predictions

In the following, the proposed model is validated by comparing the model estimates to

empirical performance for the dot product, daxpby and gsf kernels, as well as the full PCG

algorithm. The dot kernel is also used to exemplify how the simultaneous multi-threading (SMT)

feature of modern processors can be incorporated in the model. Note that estimates correspond

to the runtime of a single high-level (i.e., scalar) loop iteration.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 69

4.2.1. Simultaneous multi-threading on SKL

As discussed in Section 4.1, one loop iteration of the dot product entails two loads and one

FMA. According to the machine model documented in Tab. 2, the SKL processor can perform

16 loads and 16 FMAs per cycle for AVX-512 code. Combining application and machine models

according to Eq. (1) yields a contribution of TRegL1 = nld/τld = 2/16 cy = 0.125 cy for data

transfers between the register file and the L1 cache. With respect to computational cycles, it is

worth pointing out that the kernel contains a loop-carried dependency. Each FMA uses as one

of its inputs the result of the previous FMA. Without modulo-variable expansion (MVE) and

SMT, the impact of the dependency corresponds to the FMA latency, so Tdep = λfma = 0.5 cy.

According to Eq. (2), computational cycles therefore amount to Tcomp = max(nfma/τfma, Tdep) =

max(1/16 cy, 0.5 cy) = 0.5 cy. Since both contributions can overlap, the runtime estimate for a

data set in the L1 cache according to Eq. (4) is T = max(TRegL1, Tcomp) = 0.5 cy.

Using either two-way unrolling with MVE or 2-SMT, the impact of the dependency is cut

in half, so Tdep = 0.25 cy. The overall runtime estimate in this case becomes T = 0.25 cy.

The combination of two-way unrolling with MVE and 2-SMT again halves the impact of

the dependency, so Tdep = 0.125 cy, and the overall runtime becomes T = 0.125 cy. Note that

at this point, the contribution of the loop-carried dependency is identical to TRegL1 = 0.125 cy.

This means that additional unrolling will no longer effect a reduction in runtime since runtime

is now limited by data transfers between the register file and the L1 cache. Note as well that

reducing Tdep to 0.125 cy can also be achieved without SMT by applying four-way unrolling

with MVE to the code. In fact, it is possible to run most loop-based streaming codes at the

lower runtime limit without SMT if the executed instruction mix is optimized appropriately and

sufficient physical registers are available.

Table 3. Comparison of model estimates to empirical data (in cycles per loop

iteration) for the dot product on the SKL CPU for data-set sizes of 25 kB

(L1), 127 kB (L2), 9772 kB (L3), and 1022 MB (Mem) as function on the

degree of simultaneous multi-threading (SMT) and unrolling with

modulo-variable expansion (MVE)

Degree of Model estimate for Measurement for

SMT MVE L1 L2 L3 Mem L1 L2 L3 Mem

1 1 0.500 0.500 1.375 1.975 0.501 0.500 1.411 2.096

1 2 0.250 0.375 1.375 1.975 0.250 0.379 1.411 2.085

2 1 0.250 0.375 1.375 1.975 0.250 0.359 1.411 2.028

2 2 0.125 0.375 1.375 1.975 0.136 0.360 1.411 2.030

1 4 0.125 0.375 1.375 1.975 0.136 0.376 1.413 2.090

2 4 0.125 0.375 1.375 1.975 0.136 0.364 1.411 2.029

Table 3 summarizes the estimates discussed above, as well as estimates for the remaining

levels of the SKL processor’s memory hierarchy. As predicted, no unrolling and SMT results in a

runtime of 0.5 cy per loop iteration for a data set in the L1. Moreover, either two-way unrolling

or SMT results in a halving of the runtime to 0.25 cy. Combining both optimizations further

reduces the runtime by a factor of two to 0.125 cy. The data shows that the same result can

be achieved without SMT when applying four-way unrolling. Furthermore, the data in the last

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

70 Supercomputing Frontiers and Innovations

row supports the model prediction that additional unrolling (or SMT, if the core supported it)

would not lead to further reductions in runtime since at this point TRegL1 dominate.

When the data set resides in the L2 cache, 16 bytes (8 bytes for each of the double-precision

floating-point numbers from the two input arrays) must be transferred between the L1 and L2

caches per loop iteration. The machine model (see Tab. 2) lists a L1-L2 bandwidth of 64 B/cy

for the SKL processor, so the data-transfer time is TL1L2 = 0.25 cy. All data transfers are non-

overlapping, so the runtime estimate according to Eq. (4) becomes T = max(Tcomp, TRegL1 +

TL1L2) with an aggregated transfer time of TRegL1+TL1L2 = 0.125 cy+0.25 cy = 0.375 cy. For the

version without unrolling and SMT, Tcomp = 0.5 cy is higher than the combined contribution

of the runtime, resulting in an overall runtime of T = max(0.5 cy, 0.375 cy) = 0.5 cy. For all

other versions, the overall runtime is dominated by the combined data-transfer time, so T =

max(Tcomp, 0.375 cy) = 0.375 cy.

With data in the L3 cache, 16 bytes are to sent from the L3 to the L2 cache in each loop

iteration. At the same time, 16 bytes are preempted from the L2 cache into the victim L3

cache. The total amount of data transferred is therefore 32 bytes, which takes 1 cy according

to the documented bandwidth of 32 B/cy (cf. Tab. 2). Considering that data transfers are non-

overlapping, the overall runtime estimate becomes T = max(Tcomp, TRegL1 + TL1L2 + TL2L3).

According to the model, the runtime of all variants is dominated by the contribution of data

transfers of TRegL1 + TL1L2 + TL2L3 = 0.125 cy + 0.25 cy + 1 cy = 1.375 cy. Consequently, the

runtime estimate for all variants is T = max(Tcomp, 1.375 cy) = 1.375 cy.

Finally, in the case of input data residing in main memory, 16 bytes have to be sent from

memory to the L3 cache. The bandwidth of about 26.5 B/cy documented in the machine model

(cf., again, Tab. 2) implies a contribution of TL3Mem ≈ 0.6 cy. As before, the non-overlapping

data-transfer contributions dominate the overall runtime for all versions, resulting in an estimate

of T = max(Tcomp, 0.125 cy + 0.25 cy + 1 cy + 0.6 cy) = 1.975 cy.

4.2.2. Single-core

On the SKL processor, retiring the daxpby kernel’s multiplication and FMA operations

takes Tcomp ≈ 0.0625 cy. The one store and two load operations take TRegL1 ≈ 0.1875 cy. Per-

iteration data-transfer volumes are 24 B between the L1 and L2 caches (one load each from x

and y, one write to y), 32 B between the L2 and L3 caches (one load each from x and y, and two

corresponding evicts since the L3 is a victim cache), and 24 B between L3 and main memory

(see L1-L2 transfers). Using the bandwidths documented in the machine model, this results

in contributions of TL1L2 = 0.375 cy, and TL2L3 = 1 cy. For the measured memory bandwidth

of 60 GB/s, which for fcore = 2.2 GHz corresponds to a bandwidth of 27.3 B/cy, TL3Mem is

0.88 cy. Since all data transfers are non-overlapping, the runtime estimates are TL1 = 0.1875 cy,

TL2 = 0.5625 cy, TL3 = 1.5625 cy, and TMem = 2.4425 cy.

Intermediate and final single-core estimates for daxpy on SKL, and all other processors,

are given in Tab. 4. Cases where data volumes change in the victim L3 cache (depending on

whether the input data resides in the L3 or main memory) are indicated by listing two numbers

in the table, the former corresponding to the data-transfer time estimate for data in the L3, the

latter for data in memory.

These single-core estimates are compared to empirical data in Fig. 6. The data indicates

that the model manages to describe empirical performance on all investigated processors with

high accuracy.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 71

Table 4. Single-core estimates for daxpy on all

investigated processors

CPU SKL EPYC TX2 PWR9

Tcomp [cy/it] 0.0625 0.25 0.25 0.25

TRegL1[cy/it] 0.1875 0.75 0.75 0.75

TL1L2 [cy/it] 0.375 0.5 0.375 0.5

TL2L3 [cy/it] 1 0.75 | 0.25 1 | 0.5 1 | 0.5

TL2Mem[cy/it] — 1.23 0.29 0.36

TL3Mem[cy/it] 0.88 0.62 0.14 0.18

TL1 [cy/it] 0.1875 0.75 0.75 1.25

TL2 [cy/it] 0.5625 0.75 1.125 1.25

TL3 [cy/it] 1.5625 0.75 1.125 1.25

TMem [cy/it] 2.4425 2.1 2.06 2.1

(a) Intel Skylake-SP (b) AMD Epyc

(c) Cavium ThunderX2 (d) IBM Power9

Figure 6. Comparison of model estimates to empirical data for daxpy on (a) SKL, (b) EPYC,

(c) TX2, and (d) PWR9

4.2.3. Multicore

The daxpby and gsf kernels were selected to investigate the model’s capability to accu-

rately describe multicore performance. Being a data-bound streaming kernel, daxpby proves

particularly suitable to investigate the memory subsystem of the investigated processors and

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

72 Supercomputing Frontiers and Innovations

(a) Intel Skylake-SP (b) AMD Epyc

(c) Cavium ThunderX2 (d) IBM Power9

Figure 7. Comparison of performance models to empirical data for intra-socket scaling of

daxpby on (a) SKL, (b) EPYC, (c) TX2, and (d) PWR9. Performance is given in 106 iter-

ations per second (MIT/s)

their scaling behavior. gsf, on the other hand, is core bound for all architectures when executed

on a single core. However, when increasing the number of cores, NUMA properties turn out to

have a significant impact on performance.

Figure 7 shows the multicore scaling of daxpby on all architectures up to a full socket using

“close” thread affinity (i.e., filling cores consecutively through ccNUMA domains). For SKL we

observe the typical saturation behavior (at ≈ 2.2 GIT/s = 53 GB/s) of bandwidth-bound code

within a single SNC domain. Using the second SNC domain doubles the bandwidth and hence

performance by a factor of two as predicted by the model. The scaling behavior of EPYC exposes

its main hardware features: within a single CCX (three cores) the shared L3 bandwidth does

not scale across the cores and hits a maximum of 32 B/cy. The best bandwidth attained on a

single CCX is 30 GB/s compared to 33 GB/s for the entire ccNUMA domain (a “Zeppelin” die);

we speculate that this is a faint echo of non-scalable L3 cache. Scaling across the Zeppelin dies

is linear, as expected. On the TX2, we initially observed a significant deviation: The compiler-

generated code (black line) fell short of the model by as much as 40 % for a single core and 10 %

after saturation. The prompted investigation revealed that the TX2’s hardware prefetchers have

some deficiency: data was not prefetched in time, so runtime is subject to additional latency.

The issue could be resolved by manually adding software prefetch instructions to the compiler-

generated code to work around the flawed hardware prefetchers (blue line). This demonstrates

how the model can be used to identify bottlenecks or other shortcomings that limit performance

(in this case, the compiler). Note that the optimization is not part of our PCG code; we use the

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 73

compiler versions for all further comparisons. On PWR9, the scaling within a core pair is similar

to that observed within a CCX of EPYC. This is due to the shared and non-scalable L2 and L3

cache segments per core. The multicore model accommodates this behavior by keeping the L2

and L3 data-transfer rates constant for the two cores sharing the resources. Scaling across core

pairs (i.e., running with 2, 4, 6, etc. cores) is only limited by bandwidth saturation as can be

observed by the measurements and respective model prediction.

The gsf kernel is latency bound due to the loop-carried dependency discussed in Section 4.1.

There are two peculiarities that make predictions of the parallel gsf kernel challenging: first, the

wavefront parallelization requires a barrier synchronization after each inner loop traversal. For

the chosen problem size, the corresponding OpenMP-barrier was found to cause non-negligible

overhead. We addressed this by benchmarking the OpenMP barrier for all relevant compiler-

hardware combinations and included the barrier time as additional overhead. Secondly, although

parallel first-touch page placement works fine for all other loops, the parallel-wavefront algorithm

accesses data in parallel across the inner dimension. Since data placement is done with static

OpenMP scheduling across the outer dimension, this leads to all threads accessing the same

ccNUMA domain most of the time during the gs sweeps. It turns out that this effect can be

incorporated into the model as well. To this end, the sustained memory bandwidth is measured

across all ccNUMA domains with data residing in only one domain. This data can then be used

as a bandwidth limit when using multiple ccNUMA domains on SKL and EPYC. Figure 8a

compares performance estimates to measurements for gsf across the cores of a socket on all

architectures. The deviation from the model is generally smaller than 10 % when using multiple

NUMA domains, and below 5 % when looking at a single ccNUMA domain. The results indicate

that the model with enhancements described above (barrier overhead, ccNUMA contention)

delivers a good qualitative and quantitative description of the performance behavior.

(a) GS forward kernel (b) The full PCG algorithm

Figure 8. Comparison of estimates to empirical data for (a) GS forward kernel and (b) the full

PCG algorithm

4.2.4. Composition

With estimates for individual kernels in place we can now present multicore-scaling data for

the full PCG algorithm. Composing the model from single-loop predictions is simple due to the

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

74 Supercomputing Frontiers and Innovations

time-based formulation of the ECM model [21]. In the case of PCG we have three invocations

of daxpby, two of dot, one gs forward- and backward-sweep each, as well as one of stencil.

Figure 8b shows the comparison of the model with measurements for all four architectures.

Again, the general model error is below 10 %, and less than 5 % when looking at single ccNUMA

domains. The slightly larger deviation beyond 12 cores on TX2 can be attributed to the fact

that we use compiler-generated code instead of hand-crafted assembly for the CG solver on

this machine. The lack of prefetching causes a 10–15 % performance breakdown of data-bound

loops beyond the saturation point (see Fig. 7c), which we ignore in the model. On EPYC and

SKL we observe very low performance for OpenMP reductions across ccNUMA domains (much

larger than the considered OpenMP barrier) with the Intel compiler, causing the slight deviation

beyond one domain.

5. Related Work

There are two capable analytic (in the sense of “first principles”) performance models for

steady-state loop code on multicore CPUs: the Roofline model [10, 25] and the ECM model [6,

13, 22]. Both have been subject to intense study, refinements, and validation, and their areas

of applicability are well understood. However, while there is ample data available for Roofline

on a wide variety of architectures [15, 18], one drawback of previous applications of the ECM

model [2, 4, 12, 21, 22, 24, 26] is that they were mostly restricted to Intel processors. We provide

the first thorough cross-architecture study of the model.

The Roofline model has the attractive property that it can be easily separated into a machine

part (memory and cache bandwidths, peak performance) and an application part (computational

intensity). There is no previous work that has done the same with the ECM model. A comparison

between Roofline and ECM for several stencil algorithms can be found in [22]. A drawback of the

Roofline model is that it requires a large amount of phenomenological input such as measured

bandwidths for all core counts and all memory hierarchy levels [15], while the ECM model only

needs the saturated memory bandwidth and the machine model (i.e., overlap assumptions).

Advanced curve-fitting and machine-learning techniques combined with hardware perfor-

mance monitoring data have been used in the past to model the performance of code [1, 19].

Although these approaches are useful in practical settings, e.g., for predicting program run-

times with a goal of optimized resource scheduling, the deepest insights are gained through

first-principles models such as Roofline or ECM.

Conclusion

We have shown that it is possible to set up a well-defined workflow for modeling the serial

and parallel runtime of steady-state (sequences of) loops with regular data access patterns using

the analytic ECM performance model. One can, with minor exceptions, cleanly separate machine

properties from application properties. Four multicore server processors were investigated, and

we could demonstrate that despite their obvious differences the main properties needed to set

up a useful machine model can be summarized in a few parameters. The performance, including

scalability across cores and ccNUMA domains, of an OpenMP-parallel preconditioned CG solver

with wavefront-parallel Gauss-Seidel sweeps could be described with a modeling error of 5 %

or less in most cases. We have to emphasize that no other first-principles model is capable of

delivering such predictions with comparable accuracy and generality.

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 75

We found the overlapping property of transfers across data paths in the cache hierarchy to be

the pivotal architectural feature governing single-core performance for data-bound loops. A de-

sign with very strong in-core performance (e.g., via wide SIMD execution) but a non-overlapping

memory hierarchy may well be inferior to a weak core with strong overlap, as our comparison

of Skylake SP and AMD Epyc shows. The architecture with the lowest in-core computational

performance, Power9, came out first in serial and parallel memory-bound performance. The

Cavium ThunderX2 processor can compensate its rather low in-core performance with good

memory bandwidth and a large core count.

All modeling procedures carried out in this paper were done by hand. Some components,

e.g., the construction of a runtime prediction from code and a (given) machine model, can be

supported by tools [9]; others, such as the derivation of overlapping properties, would be very

hard to automate. However, the purpose of performance modeling is not just prediction but also

insight, and manual analysis sharpens the view on the relevant details.

Acknowledgements

We thank Thomas Gruber for helping to port the likwid tool suite to IBM’s Power9

architecture.

We also thank the Center for Information Services and High Performance Computing (ZIH)

at TU Dresden for providing access to their Power9 cluster.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Alam, S.R., Bhatia, N., Vetter, J.S.: An exploration of performance attributes for sym-

bolic modeling of emerging processing devices. In: Perrott, R., Chapman, B.M., Subhlok,

J., de Mello, R.F., Yang, L.T. (eds.) High Performance Computing and Communications.

Lecture Notes in Computer Science, vol. 4782, pp. 683–694. Springer, Berlin, Heidelberg

(2007), DOI: 10.1007/978-3-540-75444-2 64

2. Cremonesi, F., Hager, G., Wellein, G., Schrmann, F.: Analytic performance modeling and

analysis of detailed neuron simulations. The International Journal of High Performance

Computing Applications 34(4), 428–449 (2020), DOI: 10.1177/1094342020912528

3. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and

performance modeling of stencil computations on modern microprocessors. SIAM Review

51(1), 129–159 (2009), DOI: 10.1137/070693199

4. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalabil-

ity of hierarchical hybrid multigrid solvers for Stokes systems. SIAM Journal on Scientific

Computing 37(2), C143–C168 (2015), DOI: 10.1137/130941353

5. Gruber, T., et al.: LIKWID performance tools (2019), http://tiny.cc/LIKWID

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

76 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1007/978-3-540-75444-2_64
http://dx.doi.org/10.1177/1094342020912528
http://dx.doi.org/10.1137/070693199
http://dx.doi.org/10.1137/130941353
http://tiny.cc/LIKWID

6. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties

of modern multicore chips via simple machine models. Concurrency Computat.: Pract.

Exper. 28(2), 189–210 (2013), DOI: 10.1002/cpe.3180

7. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and

Engineers. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (2010)

8. Hammer, J.: pycachesim – Python Cache Hierarchy Simulator (2019), https://github.

com/RRZE-HPC/pycachesim

9. Hammer, J., Eitzinger, J., Hager, G., Wellein, G.: Kerncraft: A tool for analytic perfor-

mance modeling of loop kernels. In: Niethammer, C., Gracia, J., Hilbrich, T., Knüpfer, A.,

Resch, M.M., Nagel, W.E. (eds.) Tools for High Performance Computing 2016: Proceedings

of the 10th International Workshop on Parallel Tools for High Performance Computing, Oc-

tober 2016, Stuttgart, Germany. pp. 1–22. Springer International Publishing, Cham (2017),

DOI: 10.1007/978-3-319-56702-0 1

10. Hockney, R.W., Curington, I.J.: f1/2: A parameter to characterize memory and com-

munication bottlenecks. Parallel Computing 10(3), 277–286 (1989), DOI: 10.1016/0167-

8191(89)90100-2

11. Hofmann, J.: ibench – measure instruction latency and throughput (2019), https://

github.com/hofm/ibench

12. Hofmann, J., Fey, D.: An ECM-based energy-efficiency optimization approach for

bandwidth-limited streaming kernels on recent Intel Xeon processors. In: Proceed-

ings of the 4th International Workshop on Energy Efficient Supercomputing, 14 Nov.

2016, Salt Lake City, UT, USA. pp. 31–38. IEEE Press, Piscataway, NJ, USA (2016),

DOI: 10.1109/E2SC.2016.010

13. Hofmann, J., Hager, G., Fey, D.: On the accuracy and usefulness of analytic energy models

for contemporary multicore processors. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C.

(eds.) High Performance Computing. pp. 22–43. Springer International Publishing, Cham

(2018), DOI: 10.1007/978-3-319-92040-5 2

14. Hornich, J., Hammer, J., Hager, G., Gruber, T., Wellein, G.: Collecting and presenting

reproducible intranode stencil performance: INSPECT. Supercomputing Frontiers and In-

novations 6(3), 4–25 (2019), DOI: 10.14529/jsfi190301

15. Ilic, A., Pratas, F., Sousa, L.: Cache-aware roofline model: Upgrading the loft. IEEE

Comput. Archit. Lett. 13(1), 21–24 (2014), DOI: 10.1109/L-CA.2013.6

16. Intel Corporation: Intel Xeon Processor Scalable Family (2019), http://tiny.cc/IntelSP

17. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance com-

puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter pp. 19–25 (1995)

18. Ofenbeck, G., Steinmann, R., Cabezas, V.C., Spampinato, D.G., Püschel, M.: Applying the

roofline model. In: IEEE International Symposium on Performance Analysis of Systems and

Software, 23-25 March 2014, Monterey, CA, USA. pp. 76–85. IEEE (2014), DOI: 10.1109/IS-

PASS.2014.6844463

J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

2020, Vol. 7, No. 2 77

http://dx.doi.org/10.1002/cpe.3180
https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
http://dx.doi.org/10.1007/978-3-319-56702-0_1
http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://dx.doi.org/10.1016/0167-8191(89)90100-2
https://github.com/hofm/ibench
https://github.com/hofm/ibench
http://dx.doi.org/10.1109/E2SC.2016.010
http://dx.doi.org/10.1007/978-3-319-92040-5_2
http://dx.doi.org/10.14529/jsfi190301
http://dx.doi.org/10.1109/L-CA.2013.6
http://tiny.cc/IntelSP
http://dx.doi.org/10.1109/ISPASS.2014.6844463
http://dx.doi.org/10.1109/ISPASS.2014.6844463

19. Peraza, J., Tiwari, A., Laurenzano, M., Carrington, L., Ward, W.A., Campbell, R.: Un-

derstanding the performance of stencil computations on Intel’s Xeon Phi. In: 2013 IEEE

International Conference on Cluster Computing, 23-27 Sept. 2013, Indianapolis, IN, USA.

pp. 1–5. IEEE (2013), DOI: 10.1109/CLUSTER.2013.6702651

20. Sadasivam, S.K., Thompto, B.W., Kalla, R., Starke, W.J.: IBM Power9 processor architec-

ture. IEEE Micro 37(2), 40–51 (2017), DOI: 10.1109/MM.2017.40

21. Seiferth, J., Alappat, C., Korch, M., Rauber, T.: Applicability of the ECM performance

model to explicit ODE methods on current multi-core processors. In: Yokota, R., Weiland,

M., Keyes, D., Trinitis, C. (eds.) High Performance Computing, 24-28 June 2018, Frankfurt,

Germany. Lecture Notes in Computer Science, vol. 10876, pp. 163–183. Springer Interna-

tional Publishing, Cham (2018), DOI: 10.1007/978-3-319-92040-5 9

22. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of

stencil computations using the Execution-Cache-Memory model. In: Proceedings of the

29th ACM International Conference on Supercomputing, June 2015, Newport Beach, CA,

USA. ACM, New York, NY, USA (2015), DOI: 10.1145/2751205.2751240

23. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with PAPI-

C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Perfor-

mance Computing 2009. pp. 157–173. Springer Berlin Heidelberg, Berlin, Heidelberg (2010),

DOI: 10.1007/978-3-642-11261-4 11

24. Wichmann, K.R., Kronbichler, M., Löhner, R., Wall, W.A.: Practical applicability of op-

timizations and performance models to complex stencil based loop kernels in CFD. In-

ternational Journal of High Performance Computing Applications 33(4), 602–618 (2018),

DOI: 10.1177/1094342018774126

25. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual per-

formance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009),

DOI: 10.1145/1498765.1498785

26. Wittmann, M., Hager, G., Zeiser, T., Treibig, J., Wellein, G.: Chip-level and multi-node

analysis of energy-optimized lattice Boltzmann CFD simulations. Concurrency and Compu-

tation: Practice and Experience 28(7), 2295–2315 (2016), DOI: 10.1002/cpe.3489

Bridging the Architecture Gap: Abstracting Performance-Relevant Properties of...

78 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/CLUSTER.2013.6702651
http://dx.doi.org/10.1109/MM.2017.40
http://dx.doi.org/10.1007/978-3-319-92040-5_9
http://dx.doi.org/10.1145/2751205.2751240
http://dx.doi.org/10.1007/978-3-642-11261-4_11
http://dx.doi.org/10.1177/1094342018774126
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1002/cpe.3489

	J. Hofmann, C.L. Alappat, G. Hager, D. Fey, G. Wellein

