
Research Problems and Opportunities in Memory Systems

Onur Mutlu1, Lavanya Subramanian1

c© The Authors 2014. This paper is published with open access at SuperFri.org

The memory system is a fundamental performance and energy bottleneck in almost all com-

puting systems. Recent system design, application, and technology trends that require more ca-

pacity, bandwidth, efficiency, and predictability out of the memory system make it an even more

important system bottleneck. At the same time, DRAM technology is experiencing difficult tech-

nology scaling challenges that make the maintenance and enhancement of its capacity, energy-

efficiency, and reliability significantly more costly with conventional techniques.

In this article, after describing the demands and challenges faced by the memory system, we

examine some promising research and design directions to overcome challenges posed by memory

scaling. Specifically, we describe three major new research challenges and solution directions: 1)

enabling new DRAM architectures, functions, interfaces, and better integration of the DRAM and

the rest of the system (an approach we call system-DRAM co-design), 2) designing a memory

system that employs emerging non-volatile memory technologies and takes advantage of multiple

different technologies (i.e., hybrid memory systems), 3) providing predictable performance and

QoS to applications sharing the memory system (i.e., QoS-aware memory systems). We also briefly

describe our ongoing related work in combating scaling challenges of NAND flash memory.

Keywords: memory systems, scaling, DRAM, flash, non-volatile memory, QoS, reliability.

Introduction

Main memory is a critical component of all computing systems, employed in server, em-

bedded, desktop, mobile and sensor environments. Memory capacity, energy, cost, performance,

and management algorithms must scale as we scale the size of the computing system in order to

maintain performance growth and enable new applications. Unfortunately, such scaling has be-

come difficult because recent trends in systems, applications, and technology greatly exacerbate

the memory system bottleneck.

1. Memory System Trends

In particular, on the systems/architecture front, energy and power consumption have become

key design limiters as the memory system continues to be responsible for a significant fraction

of overall system energy/power [112]. More and increasingly heterogeneous processing cores

and agents/clients are sharing the memory system [11, 36, 39, 60, 78, 79, 178, 181], leading to

increasing demand for memory capacity and bandwidth along with a relatively new demand for

predictable performance and quality of service (QoS) from the memory system [129, 137, 176].

On the applications front, important applications are usually very data intensive and are

becoming increasingly so [17], requiring both real-time and offline manipulation of great amounts

of data. For example, next-generation genome sequencing technologies produce massive amounts

of sequence data that overwhelms memory storage and bandwidth requirements of today’s high-

end desktop and laptop systems [9, 111, 186, 196, 197] yet researchers have the goal of enabling

low-cost personalized medicine, which requires even larger amounts of data and their effective

analyses. Creation of new killer applications and usage models for computers likely depends on

how well the memory system can support the efficient storage and manipulation of data in such

1Carnegie Mellon University, Pittsburgh, USA

DOI: 10.14529/jsfi140302

2014, Vol. 1, No. 3 19

data-intensive applications. In addition, there is an increasing trend towards consolidation of

applications on a chip to improve efficiency, which leads to the sharing of the memory system

across many heterogeneous applications with diverse performance requirements, exacerbating the

aforementioned need for predictable performance guarantees from the memory system [176, 182].

On the technology front, two major trends profoundly affect memory systems. First, there

is increasing difficulty scaling the well-established charge-based memory technologies, such as

DRAM [4, 10, 70, 90, 97, 102, 124] and flash memory [20, 21, 24, 98, 123], to smaller tech-

nology nodes. Such scaling has enabled memory systems with reasonable capacity and effi-

ciency; lack of it will make it difficult to achieve high capacity and efficiency at low cost.

Challenges with DRAM scaling were recently highlighted by a paper written by Samsung and

Intel [83]. Second, some emerging resistive memory technologies, such as phase change memory

(PCM) [102, 103, 159, 163, 192], spin-transfer torque magnetic memory (STT-MRAM) [31, 100]

or resistive RAM (RRAM) [193] appear more scalable, have latency and bandwidth character-

istics much closer to DRAM than flash memory and hard disks, and are non-volatile with little

idle power consumption. Such emerging technologies can enable new opportunities in system

design, including, for example, the unification of memory and storage subsystems [127]. They

have the potential to be employed as part of main memory, alongside or in place of less scalable

and leaky DRAM, but they also have various shortcomings depending on the technology (e.g.,

some have cell endurance problems, some have very high write latency/power, some have low

density) that need to be overcome or tolerated.

2. Memory System Requirements

System architects and users have always wanted more from the memory system: high per-

formance (ideally, zero latency and infinite bandwidth), infinite capacity, all at zero cost! The

aforementioned trends do not only exacerbate and morph the above requirements, but also

add some new requirements. We classify the requirements from the memory system into two

categories: exacerbated traditional requirements and (relatively) new requirements.

The traditional requirements of performance, capacity, and cost are greatly exacerbated

today due to increased pressure on the memory system, consolidation of multiple applica-

tions/agents sharing the memory system, and difficulties in DRAM technology and density

scaling. In terms of performance, two aspects have changed. First, today’s systems and ap-

plications not only require low latency and high bandwidth (as traditional memory systems

have been optimized for), but they also require new techniques to manage and control mem-

ory interference between different cores, agents, and applications that share the memory sys-

tem [40, 129, 137, 176, 182] in order to provide high system performance as well as predictable

performance (or quality of service) to different applications [176]. Second, there is a need

for increased memory bandwidth for many applications as the placement of more cores and

agents on chip make the memory pin bandwidth an increasingly precious resource that deter-

mines system performance [71], especially for memory-bandwidth-intensive workloads, such as

GPGPUs [80, 81, 146], heterogeneous systems [11], and consolidated workloads [73, 74, 137]. In

terms of capacity, the need for memory capacity is greatly increasing due to the placement of

multiple data-intensive applications on the same chip and continued increase in the data sets

of important applications. One recent work showed that given that the core count is increasing

at a faster rate than DRAM capacity, the expected memory capacity per core is to drop by

30% every two years [113], an alarming trend since much of today’s software innovations and

Research Problems and Opportunities in Memory Systems

20 Supercomputing Frontiers and Innovations

features rely on increased memory capacity. In terms of cost, increasing difficulty in DRAM

technology scaling poses a difficult challenge to building higher density (and, as a result, lower

cost) main memory systems. Similarly, cost-effective options for providing high reliability and in-

creasing memory bandwidth are needed to scale the systems proportionately with the reliability

and data throughput needs of today’s data-intensive applications. Hence, the three traditional

requirements of performance, capacity, and cost have become exacerbated.

The relatively new requirements from the main memory system are threefold. First, tech-

nology scalability: there is a new need for finding a technology that is much more scalable than

DRAM in terms of capacity, energy, and cost, as described earlier. As DRAM continued to scale

well from the above-100-nm to 30-nm technology nodes, the need for finding a more scalable

technology was not a prevalent problem. Today, with the significant circuit and device scaling

challenges DRAM has been facing below the 30-nm node [83], it is. Second, there is a relatively

new need for providing performance predictability and QoS in the shared main memory system.

As single-core systems were dominant and memory bandwidth and capacity were much less of

a shared resource in the past, the need for predictable performance was much less apparent or

prevalent [129]. Today, with increasingly more cores/agents on chip sharing the memory sys-

tem and increasing amounts of workload consolidation, memory fairness, predictable memory

performance, and techniques to mitigate memory interference have become first-class design

constraints. Third, there is a great need for much higher energy/power/bandwidth efficiency in

the design of the main memory system. Higher efficiency in terms of energy, power, and band-

width enables the design of much more scalable systems where main memory is shared between

many agents, and can enable new applications in almost all domains where computers are used.

Arguably, this is not a new need today, but we believe it is another first-class design constraint

that has not been as traditional as performance, capacity, and cost.

3. Solution Directions and Research Opportunities

As a result of these systems, applications, and technology trends and the resulting require-

ments, it is our position that researchers and designers need to fundamentally rethink the way

we design memory systems today to 1) overcome scaling challenges with DRAM, 2) enable the

use of emerging memory technologies, 3) design memory systems that provide predictable per-

formance and quality of service to applications and users. The rest of this article describes our

solution ideas in these three relatively new research directions, with pointers to specific tech-

niques when possible.2 Since scaling challenges themselves arise due to difficulties in enhancing

memory components at solely one level of the computing stack (e.g., the device and/or circuit

levels in case of DRAM scaling), we believe effective solutions to the above challenges will re-

quire cooperation across different layers of the computing stack, from algorithms to software to

microarchitecture to devices, as well as between different components of the system, including

2Note that this paper is not meant or designed to be a survey of all recent works in the field of memory systems.

There are many such insightful works, but we do not have space in this paper to discuss them all. This paper is

meant to outline the challenges and research directions in memory systems as we see them. Therefore, many of the

solutions we discuss draw heavily upon our own past, current, and future research. We believe this will be useful

for the community as the directions we have pursued and are pursuing are hopefully fundamental challenges for

which other solutions and approaches would be greatly useful to develop. We look forward to similar papers from

other researchers describing their perspectives and solution directions/ideas.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 21

processors, memory controllers, memory chips, and the storage subsystem. As much as possible,

we will give examples of such cross-layer solutions and directions.

4. New Research Challenge 1: New DRAM Architectures

DRAM has been the choice technology for implementing main memory due to its relatively

low latency and low cost. DRAM process technology scaling has enabled lower cost per unit

area by enabling reductions in DRAM cell size for a long time. Unfortunately, further scaling of

DRAM cells has become costly [4, 10, 70, 83, 90, 102, 124] due to increased manufacturing com-

plexity/cost, reduced cell reliability, and potentially increased cell leakage leading to high refresh

rates. Recently, a paper by Samsung and Intel [83] has also discussed the key scaling challenges

of DRAM at the circuit level. They have identified three major challenges as impediments to

effective scaling of DRAM to smaller technology nodes: 1) the growing cost of refreshes [114],

2) increase in write latency, and 3) variation in the retention time of a cell over time [115]. In

light of such challenges, we believe there are at least the following key issues to tackle in order

to design new DRAM architectures that are much more scalable:

1) reducing the negative impact of refresh on energy, performance, QoS, and density scal-

ing [28, 83, 86, 114, 115],

2) improving reliability of DRAM at low cost [86, 97, 122, 145],

3) improving DRAM parallelism/bandwidth [28, 96], latency [109, 110], and energy effi-

ciency [96, 109, 114],

4) minimizing data movement between DRAM and processing elements, which causes high

latency, energy, and bandwidth consumption, by doing more operations on the DRAM and the

memory controllers [167],

5) reducing the significant amount of waste in today’s main memories in which much of the

fetched/stored data can be unused due to coarse-granularity management [126, 153–155, 187,

199].

Traditionally, DRAM devices have been separated from the rest of the system with a rigid

interface, and DRAM has been treated as a passive slave device that simply responds to the

commands given to it by the memory controller. We believe the above key issues can be solved

more easily if we rethink the DRAM architecture and functions, and redesign the interface

such that DRAM, controllers, and processors closely cooperate. We call this high-level solution

approach system-DRAM co-design. We believe key technology trends, e.g., the 3D stacking of

memory and logic [5, 119, 188] and increasing cost of scaling DRAM solely via circuit-level

approaches [70, 83, 90, 124], enable such a co-design to become increasingly more feasible. We

proceed to provide several examples from our recent research that tackle the problems of refresh

(and retention errors), parallelism, reliability, latency, energy efficiency, in-memory computation,

and capacity and bandwidth waste.

4.1. Reducing Refresh Impact

With higher DRAM capacity, more cells need to be refreshed at likely higher rates than

today. Our recent work [114] indicates that refresh rate limits DRAM density scaling: a hypo-

thetical 64Gb DRAM device would spend 46% of its time and 47% of all DRAM energy for

refreshing its rows, as opposed to typical 4Gb devices of today that spend 8% of the time and

15% of the DRAM energy on refresh (as shown in Figure 1). For instance, a modern supercom-

Research Problems and Opportunities in Memory Systems

22 Supercomputing Frontiers and Innovations

puter may have 1PB of memory in total [6]. If we assume this memory is built from 8Gb DRAM

devices and a nominal refresh rate, 7.8kW of power would be expended, on average, just to re-

fresh the entire 1PB memory. This is quite a large number, just to ensure the memory correctly

keeps its contents! And, this power is always spent regardless of how much the supercomputer

is utilized.

Today’s DRAM devices refresh all rows at the same worst-case rate (e.g., every 64ms).

However, only a small number of weak rows require a high refresh rate [86, 91, 115] (e.g.,

only ∼1000 rows in 32GB DRAM require to be refreshed more frequently than every 256ms).

Retention-Aware Intelligent DRAM Refresh (RAIDR) [114] exploits this observation: it groups

DRAM rows into bins (implemented as Bloom filters [16] to minimize hardware overhead) based

on the retention time of the weakest cell within each row. Each row is refreshed at a rate

corresponding to its retention time bin. Since few rows need high refresh rate, one can use

very few bins to achieve large reductions in refresh counts: our results show that RAIDR with

three bins (1.25KB hardware cost) reduces refresh operations by ∼75%, leading to significant

improvements in system performance and energy efficiency as described by Liu et al. [114].

2 Gb 4 Gb 8 Gb 16 Gb 32 Gb 64 Gb
Device capacity

0

20

40

60

80

100

%
D
R
A
M

en
er
gy

sp
en
tr
ef
re
sh
in
g

Present Future

47%

15%

a) Power consumption

2 Gb 4 Gb 8 Gb 16 Gb 32 Gb 64 Gb
Device capacity

0

20

40

60

80

100
%

tim
e
sp
en
tr
ef
re
sh
in
g

Present Future

46%

8%

b) Throughput Loss

Figure 1. Impact of refresh in current (DDR3) and projected DRAM devices. Reproduced

from [114]

Like RAIDR, other approaches have also been proposed to take advantage of the retention

time variation of cells across a DRAM chip. For example, some works proposed refreshing weak

rows more frequently at a per-row granularity, others proposed not using memory rows with low

retention times, and yet others suggested mapping critical data to cells with longer retention

times so that critical data is not lost [7, 72, 89, 118, 149, 190] – see [114, 115] for a discussion

of such techniques. Such approaches that exploit non-uniform retention times across DRAM

require accurate retention time profiling mechanisms. Understanding of retention time as well as

error behavior of DRAM devices is a critical research topic, which we believe can enable other

mechanisms to tolerate refresh impact and errors at low cost. Liu et al. [115] provide an experi-

mental characterization of retention times in modern DRAM devices to aid such understanding.

Our initial results in that work, obtained via the characterization of 248 modern commod-

ity DRAM chips from five different DRAM manufacturers, suggest that the retention time of

cells in a modern device is largely affected by two phenomena: 1) Data Pattern Dependence,

where the retention time of each DRAM cell is significantly affected by the data stored in other

DRAM cells, 2) Variable Retention Time, where the retention time of a DRAM cell changes

unpredictably over time. These two phenomena pose challenges against accurate and reliable

determination of the retention time of DRAM cells, online or offline. A promising area of future

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 23

research is to devise techniques that can identify retention times of DRAM cells in the presence

of data pattern dependence and variable retention time. Khan et al.’s recent work [86] provides

more analysis of the effectiveness of conventional error mitigation mechanisms for DRAM reten-

tion failures and proposes online retention time profiling as a solution for identifying retention

times of DRAM cells as a potentially promising approach in future DRAM systems. We believe

developing such system-level techniques that can detect and exploit DRAM characteristics on-

line, during system operation, will be increasingly valuable as such characteristics will become

much more difficult to accurately determine and exploit by the manufacturers due to the scaling

of technology to smaller nodes.

4.2. Improving DRAM Reliability: Better DRAM Error Management

As DRAM technology scales to smaller node sizes, its reliability becomes more difficult to

maintain at the circuit and device levels. In fact, we already have evidence of the difficulty of

maintaining DRAM reliability from the DRAM chips operating in the field today. Our recent

research [97] showed that a majority of the DRAM chips manufactured between 2010-2014 by

three major DRAM vendors exhibit a particular failure mechanism called row hammer: by

activating a row enough times within a refresh interval, one can corrupt data in nearby DRAM

rows. The source code is available at [3]. This is an example of a disturbance error where the

access of a cell causes disturbance of the value stored in a nearby cell due to cell-to-cell coupling

(i.e., interference) effects, some of which are described by our recent works [97, 115]. Such

interference-induced failure mechanisms are well-known in any memory that pushes the limits of

technology, e.g., NAND flash memory (see Section 7). However, in case of DRAM, manufacturers

have been quite successful in containing such effects until recently. Clearly, the fact that such

failure mechanisms have become difficult to contain and that they have already slipped into

the field shows that failure/error management in DRAM has become a significant problem. We

believe this problem will become even more exacerbated as DRAM technology scales down to

smaller node sizes. Hence, it is important to research both the (new) failure mechanisms in

future DRAM designs as well as mechanisms to tolerate them. Towards this end, we believe

it is critical to gather insights from the field by 1) experimentally characterizing DRAM chips

using controlled testing infrastructures [86, 97, 110, 115], 2) analyzing large amounts of data

from the field on DRAM failures in large-scale systems [164, 172, 173], 3) developing models for

failures/errors based on these experimental characterizations, and 4) developing new mechanisms

at the system and architecture levels that can take advantage of such models to tolerate DRAM

errors.

Looking forward, we believe that increasing cooperation between the DRAM device and

the DRAM controller as well as other parts of the system, including system software, would be

greatly beneficial for identifying and tolerating DRAM errors. For example, such cooperation

can enable the communication of information about weak (or, unreliable) cells and the charac-

teristics of different rows or physical memory regions from the DRAM device to the system. The

system can then use this information to optimize data allocation and movement, refresh rate

management, and error tolerance mechanisms. Low-cost error tolerance mechanisms are likely

to be enabled more efficiently with such coordination between DRAM and the system. In fact,

as DRAM technology scales and error rates increase, it might become increasingly more difficult

to maintain the illusion that DRAM is a perfect, error-free storage device (the row hammer fail-

ure mechanism [97] already provides evidence for this). DRAM may start looking increasingly

Research Problems and Opportunities in Memory Systems

24 Supercomputing Frontiers and Innovations

like flash memory, where the memory controller manages errors so that an acceptable specified

uncorrectable bit error rate is satisfied [20, 22]. We envision a DRAM Translation Layer (DTL),

not unlike the Flash Translation Layer (FTL) of today in spirit (which is decoupled from the

processor and performs a wide variety of management functions for flash memory, including er-

ror correction, garbage collection, read/write scheduling, data mapping, etc.), can enable better

scaling of DRAM memory into the future by not only enabling easier error management but

also opening up new opportunities to perform computation, mapping and metadata management

close to memory. This can become especially feasible in the presence of the trend of combining

the DRAM controller and DRAM via 3D stacking. What should the interface be to such a layer

and what should be performed in the DTL are promising areas of future research.

4.3. Improving DRAM Parallelism

A key limiter of DRAM parallelism is bank conflicts. Today, a bank is the finest-granularity

independently accessible memory unit in DRAM. If two accesses go to the same bank, one has

to completely wait for the other to finish before it can be started (see Figure 2). We have recently

developed mechanisms, called SALP (subarray level parallelism) [96], that exploit the internal

subarray structure of the DRAM bank (Figure 2) to mostly parallelize two requests that access

the same DRAM bank. The key idea is to reduce the hardware sharing between DRAM subarrays

so that accesses to the same bank but different subarrays can be initiated in a pipelined manner.

This mechanism requires the exposure of the internal subarray structure of a DRAM bank to

the controller and the design of the controller to take advantage of this structure. Our results

show significant improvements in performance and energy efficiency of main memory due to

parallelization of requests and improvement of row buffer hit rates (as row buffers of different

subarrays can be kept active) at a low DRAM area overhead of 0.15%. Exploiting SALP achieves

most of the benefits of increasing the number of banks at much lower area and power overhead.

Exposing the subarray structure of DRAM to other parts of the system, e.g., to system software

or memory allocators, can enable data placement and partitioning mechanisms that can improve

performance and efficiency even further.

Note that other approaches to improving DRAM parallelism especially in the presence of

refresh and long write latencies are also promising to be investigated. Chang et al. [28] discuss

mechanisms to improve the parallelism between refreshes and reads/write requests, and Kang

et al. [83] discuss the use of SALP as a promising method to tolerate long write latencies to

DRAM, which they identify as one of the three key scaling challenges for DRAM, in addition

to refresh and variable retention time. We refer the reader to these works for more information

about the proposed parallelization techniques.

4.4. Reducing DRAM Latency and Energy

The DRAM industry has so far been primarily driven by the cost-per-bit metric: provide

maximum capacity for a given cost. As shown in Figure 3, DRAM chip capacity has increased

by approximately 16x in 12 years while the DRAM latency reduced by only approximately 20%.

This is the result of a deliberate choice to maximize capacity of a DRAM chip while minimizing

its cost. We believe this choice needs to be revisited in the presence of at least two key trends.

First, DRAM latency is becoming more important especially for response-time critical workloads

that require QoS guarantees [45]. Second, DRAM capacity is becoming very hard to scale and as

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 25

row

Bank
r
o
w
-d
e
c
o
d
e
r

row-buffer

3
2

k
 r

o
w

s

a) Logical abstraction of a DRAM

bank

local row-buffer

Subarray1

global row-buffer

local row-buffer

Subarray64

g
lo

b
a

l
d

e
co

d
e

r 5
1

2

r
o
w
s

5
1

2

r
o
w
s

b) Implementation of a DRAM bank

Figure 2. DRAM Bank Organization. Reproduced from [96]

a result manufacturers likely need to provide new values for the DRAM chips, leading to more

incentives for the production of DRAMs that are optimized for objectives other than mainly

capacity maximization.

Figure 3. DRAM Capacity & Latency Over Time. Reproduced from [109]

To mitigate the high area overhead of DRAM sensing structures, commodity DRAMs (shown

in Figure 4a) connect many DRAM cells to each sense-amplifier through a wire called a bitline.

These bitlines have a high parasitic capacitance due to their long length, and this bitline ca-

pacitance is the dominant source of DRAM latency. Specialized low-latency DRAMs (shown in

Figure 4b) use shorter bitlines with fewer cells, but have a higher cost-per-bit due to greater

sense-amplifier area overhead. We have recently shown that we can architect a heterogeneous-

latency bitline DRAM, called Tiered-Latency DRAM (TL-DRAM) [109], shown in Figure 4c, by

dividing a long bitline into two shorter segments using an isolation transistor: a low-latency seg-

ment can be accessed with the latency and efficiency of a short-bitline DRAM (by turning off the

isolation transistor that separates the two segments) while the high-latency segment enables high

density, thereby reducing cost-per-bit. The additional area overhead of TL-DRAM is approxi-

mately 3% over commodity DRAM. Significant performance and energy improvements can be

achieved by exposing the two segments to the memory controller and system software such that

appropriate data is cached or allocated into the low-latency segment. We expect such approaches

that design and exploit heterogeneity to enable/achieve the best of multiple worlds [132] in the

memory system can lead to other novel mechanisms that can overcome difficult contradictory

tradeoffs in design.

A recent paper by Lee et al. [110] exploits the extra margin built into DRAM timing pa-

rameters to reliably reduce DRAM latency when such extra margin is really not necessary (e.g.,

Research Problems and Opportunities in Memory Systems

26 Supercomputing Frontiers and Innovations

sense-amps

cells

b
it
lin
e

(l
o
n
g
)

a) Cost Opt.

sense-amps

cells

sense-amps

cells

b
it
lin
e

(s
h
o
rt
)

b
it
lin
e

(s
h
o
rt
)

b) Latency Opt.

sense-amps

cellsb
it

lin
e

Isolation TR.

b
it

lin
e

c) TL-DRAM

Figure 4. Cost Optimized Commodity DRAM (a), Latency Optimized DRAM (b), Tiered-

Latency DRAM (c). Reproduced from [109]

when the operating temperature is low). The standard DRAM timing constraints are designed

to ensure correct operation for the cell with the lowest retention time at the highest acceptable

operating temperature. Lee et al. [110] make the observation that a significant majority of DRAM

modules do not exhibit the worst case behavior and that most systems operate at a tempera-

ture much lower than the highest acceptable operating temperature, enabling the opportunity

to significantly reduce the timing constraints. They introduce Adaptive-Latency DRAM (AL-

DRAM), which dynamically measures the operating temperature of each DIMM and employs

timing constraints optimized for that DIMM at that temperature. Results of their profiling ex-

periments on 82 modern DRAM modules show that AL-DRAM can reduce the DRAM timing

constraints by an average of 43% and up to 58%. This reduction in latency translates to a 14%

average improvement in overall system performance across a wide variety of applications on the

evaluated real systems. We believe such approaches to reducing memory latency (and energy)

by exploiting common-case device characteristics and operating conditions are very promising:

instead of always incurring the worst-case latency and energy overheads due to homogeneous,

one-size-fits-all parameters, adapt the parameters dynamically to fit the common-case operating

conditions.

Another promising approach to reduce DRAM energy is the use of dynamic voltage and

frequency scaling (DVFS) in main memory [44, 46]. David et al. [44] make the observation that

at low memory bandwidth utilization, lowering memory frequency/voltage does not significantly

alter memory access latency. Relatively recent works have shown that adjusting memory volt-

age and frequency based on predicted memory bandwidth utilization can provide significant

energy savings on both real [44] and simulated [46] systems. Going forward, memory DVFS can

enable dynamic heterogeneity in DRAM channels, leading to new customization and optimiza-

tion mechanisms. Also promising is the investigation of more fine-grained power management

methods within the DRAM rank and chips for both active and idle low power modes.

4.5. Exporting Bulk Data Operations to DRAM: Enabling In-Memory

Computation

Today’s systems waste significant amount of energy, DRAM bandwidth and time (as well

as valuable on-chip cache space) by sometimes unnecessarily moving data from main memory

to processor caches. One example of such wastage sometimes occurs for bulk data copy and

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 27

initialization operations in which a page is copied to another or initialized to a value. If the

copied or initialized data is not immediately needed by the processor, performing such operations

within DRAM (with relatively small changes to DRAM) can save significant amounts of energy,

bandwidth, and time. We observe that a DRAM chip internally operates on bulk data at a row

granularity. Exploiting this internal structure of DRAM can enable page copy and initialization

to be performed entirely within DRAM without bringing any data off the DRAM chip, as we

have shown in recent work [167]. If the source and destination page reside within the same

DRAM subarray, our results show that a page copy can be accelerated by more than an order of

magnitude (∼11 times), leading to an energy reduction of ∼74 times and no wastage of DRAM

data bus bandwidth [167]. The key idea is to capture the contents of the source row in the sense

amplifiers by 1) activating the row, then 2) deactivating the source row (using a new command

which introduces very little hardware cost, amounting to less than 0.03% of DRAM chip area),

and 3) immediately activating the destination row, which causes the sense amplifiers to drive

their contents into the destination row, effectively accomplishing the page copy (shown at a high

level in fig. 5). Doing so reduces the latency of a 4KB page copy operation from ∼1000ns to

less than 100ns in an existing DRAM chip. Applications that have significant page copy and

initialization experience large system performance and energy efficiency improvements [167].

Future software can be designed in ways that can take advantage of such fast page copy and

initialization operations, leading to benefits that may not be apparent in today’s software that

tends to minimize such operations due to their current high cost.

p
ro

ce
ss

o
r

cache

core

memory
controller DRAM

64B

64B

row-buffer (4Kbit)
row (4Kbit)
row (4Kbit)
row (4Kbit)
row (4Kbit)

2Gb DRAM Chip

row-buffer (4KB)

source row

destination row

row

row

row-buffer (4KB)

source row

destination row

row

row

Step 1. Copy source row
into row-buffer

Step 2. Copy row-buffer
into destination row

5
1

2
ro

w
s

Figure 5. High-level idea behind RowClone’s in-DRAM page copy mechanism

Going forward, we believe acceleration of other bulk data movement and computation op-

erations in or very close to DRAM, via similar low-cost architectural support mechanisms, can

enable promising savings in system energy, latency, and bandwidth. Given the trends and re-

quirements described in Section 1, it is time to re-examine the partitioning of computation

between processors and DRAM, treating memory as a first-class accelerator as an integral part

of a heterogeneous parallel computing system [132].

4.6. Minimizing Memory Capacity and Bandwidth Waste

Storing and transferring data at large granularities (e.g., pages, cache blocks) within

the memory system leads to large inefficiency when most of the large granularity is not

needed [82, 101, 125, 126, 157, 166, 187, 199, 200]. In addition, much of the data stored in

memory has significant redundancy [8, 13, 52, 59, 153–155, 198]. Two promising research di-

rections are to develop techniques that can 1) efficiently provide fine granularity access/storage

when enough and large granularity access/storage only when needed, 2) efficiently compress data

in main memory and caches without significantly increasing latency and system complexity. Our

Research Problems and Opportunities in Memory Systems

28 Supercomputing Frontiers and Innovations

results with new low-cost, low-latency cache compression [153] and memory compression [154]

techniques and frameworks are promising, providing high compression ratios at low complexity

and latency. For example, the key idea of Base-Delta-Immediate compression [153] is that many

cache blocks have low dynamic range in the values they store, i.e., the differences between values

stored in the cache block are small. Such a cache block can be encoded using a base value and

an array of much smaller (in size) differences from that base value, which together occupy much

less space than storing the full values in the original cache block. This compression algorithm

has low decompression latency as the cache block can be reconstructed using a vector addition

(or potentially even vector concatenation). It reduces memory bandwidth requirements, better

utilizes memory/cache space, while minimally impacting the latency to access data. Granularity

management and data compression support can potentially be integrated into DRAM controllers

or partially provided within DRAM, and such mechanisms can be exposed to software, which can

enable higher energy savings and higher performance improvements. Management techniques for

compressed caches and memories (e.g., [155]) as well as flexible granularity memory system de-

signs, software techniques/designs to take better advantage of cache/memory compression and

flexible-granularity, and techniques to perform computations on compressed memory data are

quite promising directions for future research.

4.7. Co-Designing DRAM Controllers and Processor-Side Resources

Since memory bandwidth is a precious resource, coordinating the decisions made by

processor-side resources better with the decisions made by memory controllers to maximize

memory bandwidth utilization and memory locality is a promising area of more efficiently uti-

lizing DRAM. Lee et al. [106] and Stuecheli et al. [175] both show that orchestrating last-level

cache writebacks such that dirty cache lines to the same row are evicted together from the cache

improves DRAM row buffer locality of write accesses, thereby improving system performance.

Going forward, we believe such coordinated techniques between the processor-side resources

and memory controllers will become increasingly more effective as DRAM bandwidth becomes

even more precious. Mechanisms that predict and convey slack in memory requests [42, 43],

that orchestrate the on-chip scheduling of memory requests to improve memory bank paral-

lelism [108] and that reorganize cache metadata for more efficient bulk (DRAM row granularity)

tag lookups [168] can also enable more efficient memory bandwidth utilization.

5. New Research Challenge 2: Emerging Memory Technologies

While DRAM technology scaling is in jeopardy, some emerging technologies seem more

scalable. These include phase-change memory PCM, spin-transfer torque magnetoresistive RAM

(STT-MRAM) and resistive RAM (RRAM). These emerging technologies usually provide a

tradeoff, and seem unlikely to completely replace DRAM (evaluated in [102–104] for PCM and

in [100] for STT-MRAM), as they are not strictly superior to DRAM. For example, PCM is

advantageous over DRAM because it 1) has been demonstrated to scale to much smaller feature

sizes [102, 163, 192] and can store multiple bits per cell [202, 203], promising higher density, 2)

is non-volatile and as such requires no refresh (which is a key scaling challenge of DRAM as we

discussed in Section 4.1), and 3) has low idle power consumption. On the other hand, PCM has

significant shortcomings compared to DRAM, which include 1) higher read latency and read

energy, 2) much higher write latency and write energy, 3) limited endurance for a given PCM

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 29

cell, a problem that does not exist (practically) for a DRAM cell, and 4) potentially difficult-to-

handle reliability issues, such as the problem of resistance drift [165]. As a result, an important

research challenge is how to utilize such emerging technologies at the system and architecture

levels so that they can augment or perhaps even replace DRAM.

Our initial experiments and analyses [102–104] that evaluated the complete replacement

of DRAM with PCM showed that one would require reorganization of peripheral circuitry of

PCM chips (with the goal of absorbing writes and reads before they update or access the PCM

cell array) to enable PCM to get close to DRAM performance and efficiency. These initial

results are reported in Lee et al. [102–104] and they show that the performance, energy, and

endurance of PCM chips can be greatly improved with the proposed techniques. We have also

reached a similar conclusion upon evaluation of the complete replacement of DRAM with STT-

MRAM [100]: reorganization of peripheral circuitry of STT-MRAM chips (with the goal of

minimizing the number of writes to the STT-MRAM cell array, as write operations are high-

latency and high-energy in STT-MRAM) enables an STT-MRAM based main memory to be

more energy-efficient than a DRAM-based main memory.

One can achieve more efficient designs of PCM (or STT-MRAM) chips by taking advantage

of the non-destructive nature of reads, which enables simpler and narrower row buffer organiza-

tions [125]. Unlike in DRAM, the entire memory row does not need to be buffered in a device

where reading a memory row does not destroy the data stored in the row. Meza et al. [125]

show that having narrow row buffers in emerging non-volatile devices can greatly reduce main

memory dynamic energy compared to a DRAM baseline with large row sizes, without greatly

affecting endurance, and for some NVM technologies, lead to improved performance. Going for-

ward, designing systems, memory controllers and memory chips taking advantage of the specific

property of non-volatility of emerging technologies seems promising.

We believe emerging technologies enable at least three major system-level opportunities

that can improve overall system efficiency: 1) hybrid main memory systems, 2) non-volatile

main memory, 3) merging of memory and storage. We briefly touch upon each.

5.1. Hybrid Main Memory

A hybrid main memory system [29, 47, 126, 156, 159, 162, 201] consists of multiple different

technologies or multiple different types of the same technology with differing characteristics,

e.g., performance, cost, energy, reliability, endurance. A key question is how to manage data

allocation and movement between the different technologies so that one can achieve the best

of (or close to the best of) the desired performance metrics. In other words, we would like to

exercise the advantages of each technology as much as possible while hiding the disadvantages of

any technology. Potential technologies include DRAM, 3D-stacked DRAM, embedded DRAM,

PCM, STT-MRAM, other resistive memories, flash memory, forms of DRAM that are optimized

for different metrics and purposes, etc. An example hybrid main memory system consisting of a

large amount of PCM as main memory and a small amount of DRAM as its cache is depicted

in Figure 6.

The design space of hybrid memory systems is large, and many potential questions exist.

For example, should all memories be part of main memory or should some of them be used

as a cache of main memory (or should there be configurability)? What technologies should be

software visible? What component of the system should manage data allocation and movement?

Should these tasks be done in hardware, software, or collaboratively? At what granularity should

Research Problems and Opportunities in Memory Systems

30 Supercomputing Frontiers and Innovations

...

Ctlr. Ctlr.

...

...

DRAM PCM

(High Capacity)

(Low Capacity)

Row BufferBankMemory Channel

CPU

PCM

DRAM Cache

Figure 6. An example hybrid main memory system organization using PCM and DRAM chips.

Reproduced from [201]

data be moved between different memory technologies? Some of these questions are tackled

in [29, 47, 126, 156, 159, 162, 201], among other works recently published in the computer

architecture community. For example, Yoon et al. [201] make the key observation that row

buffers are present in both DRAM and PCM (see fig. 6), and they have (or can be designed to

have) the same latency and bandwidth in both DRAM and PCM. Yet, row buffer misses are

much more costly in terms of latency, bandwidth, and energy in PCM than in DRAM. To exploit

this, they devise a policy that avoids accessing in PCM data that frequently causes row buffer

misses. Hardware or software can dynamically keep track of such data and allocate/cache it in

DRAM while keeping data that frequently hits in row buffers in PCM. PCM also has much higher

write latency/power than read latency/power: to take this into account, the allocation/caching

policy is biased such that pages that are written to more likely stay in DRAM [201].

Note that hybrid memory does not need to consist of completely different underlying tech-

nologies. A promising approach is to combine multiple different DRAM chips, optimized for

different purposes. For example, recent works proposed the use of low-latency and high-latency

DIMMs in separate memory channels and allocating performance-critical data to low-latency

DIMMs to improve performance and energy-efficiency at the same time [29], or the use of highly-

reliable DIMMs (protected with ECC) and unreliable DIMMs in separate memory channels and

allocating error-vulnerable data to highly-reliable DIMMs to maximize server availability while

minimizing server memory cost [122]. We believe these approaches are quite promising for scal-

ing the DRAM technology into the future by specializing DRAM chips for different purposes.

These approaches that exploit heterogeneity do increase system complexity but that complexity

may be warranted if it is lower than the complexity of scaling DRAM chips using the same

optimization techniques the DRAM industry has been using so far.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 31

5.2. Making Non-volatile Main Memory Reliable and Secure

Non-volatility of main memory opens up new opportunities that can be exploited by higher

levels of the system stack to improve performance and reliability/consistency (see, for exam-

ple, [38, 48]). Researching how to adapt applications and system software to utilize fast, byte-

addressable non-volatile main memory is an important research direction to pursue [127].

On the flip side, the same non-volatility can lead to potentially unforeseen security and

privacy issues: critical and private data can persist long after the system is powered down [33],

and an attacker can take advantage of this fact. Wearout issues of emerging technology can also

cause attacks that can intentionally degrade memory capacity in the system [158, 171]. Securing

non-volatile main memory is therefore an important systems challenge.

5.3. Merging of Memory and Storage

One promising opportunity fast, byte-addressable, non-volatile emerging memory technolo-

gies open up is the design of a system and applications that can manipulate persistent data

directly in memory instead of going through a slow storage interface. This can enable not only

much more efficient systems but also new and more robust applications. We discuss this oppor-

tunity in more detail below.

Traditional computer systems have a two-level storage model: they access and manipulate

1) volatile data in main memory (DRAM, today) with a fast load/store interface, 2) persistent

data in storage media (flash and hard disks, today) with a slower file system interface. Unfortu-

nately, such a decoupled memory/storage model managed via vastly different techniques (fast,

hardware-accelerated memory management units on one hand, and slow operating/file system

(OS/FS) software on the other) suffers from large inefficiencies in locating data, moving data,

and translating data between the different formats of these two levels of storage that are ac-

cessed via two vastly different interfaces, leading to potentially large amounts of wasted work

and energy [127, 170]. The two different interfaces arose largely due to the large discrepancy

in the access latencies of conventional technologies used to construct volatile memory (DRAM)

and persistent storage (hard disks and flash memory).

Today, new non-volatile memory technologies (NVM), e.g, PCM, STT-MRAM, RRAM,

show the promise of storage capacity and endurance similar to or better than flash memory at

latencies comparable to DRAM. This makes them prime candidates for providing applications a

persistent single-level store with a single load/store-like interface to access all system data (in-

cluding volatile and persistent data). In fact, if we keep the traditional two-level memory/storage

model in the presence of these fast NVM devices as part of storage, the operating system and file

system code for locating, moving, and translating persistent data from the non-volatile NVM de-

vices to volatile DRAM for manipulation purposes becomes a great bottleneck, causing most of

the memory energy consumption and degrading performance by an order of magnitude in some

data-intensive workloads, as we showed in recent work [127]. With energy as a key constraint,

and in light of modern high-density NVM devices, a promising research direction is to unify

and coordinate the management of volatile memory and persistent storage in a single level, to

eliminate wasted energy and performance, and to simplify the programming model at the same

time.

To this end, Meza et al. [127] describe the vision and research challenges of a persistent mem-

ory manager (PMM), a hardware acceleration unit that coordinates and unifies memory/storage

Research Problems and Opportunities in Memory Systems

32 Supercomputing Frontiers and Innovations

management in a single address space that spans potentially multiple different memory tech-

nologies (DRAM, NVM, flash) via hardware/software cooperation. Figure 7 depicts an example

PMM, programmed using a load/store interface (with persistent objects) and managing an array

of heterogeneous devices.

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash HDDs NVM

Persistent Memory Manager
Hardware
Software

Data Layout, Persistence, Metadata, Security, ...

Figure 7. An example Persistent Memory Manager (PMM). Reproduced from [127]

The spirit of the PMM unit is much like the virtual memory management unit of a modern

virtual memory system used for managing working memory, but it is fundamentally different

in that it redesigns/rethinks the virtual memory and storage abstractions and unifies them

in a different interface supported by scalable hardware mechanisms. The PMM: 1) exposes a

load/store interface to access persistent data, 2) manages data placement, location, persistence

semantics, and protection (across multiple memory devices) using both dynamic access infor-

mation and hints from the application and system software, 3) manages metadata storage and

retrieval, needed to support efficient location and movement of persistent data, and 4) exposes

hooks and interfaces for applications and system software to enable intelligent data placement

and persistence management. Our preliminary evaluations show that the use of such a unit, if

scalable and efficient, can greatly reduce the energy inefficiency and performance overheads of

the two-level storage model, improving both performance and energy-efficiency of the overall

system, especially for data-intensive workloads [127].

We believe there are challenges to be overcome in the design, use, and adoption of such a

unit that unifies working memory and persistent storage. These challenges include:

1) How to devise efficient and scalable data mapping, placement, and location mechanisms

(which need to be hardware/software cooperative).

2) How to ensure that the consistency and protection requirements of different types of data are

adequately, correctly, and reliably satisfied (One example recent work tackled the problem

of providing storage consistency at high performance [121]). How to enable the reliable and

effective coexistence and manipulation of volatile and persistent data.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 33

3) How to redesign applications such that they can take advantage of the unified mem-

ory/storage interface and make the best use of it by providing appropriate hints for data

allocation and placement to the persistent memory manager.

4) How to provide efficient and high-performance backward compatibility mechanisms for en-

abling and enhancing existing memory and storage interfaces in a single-level store. These

techniques can seamlessly enable applications targeting traditional two-level storage systems

to take advantage of the performance and energy-efficiency benefits of systems employing

single-level stores. We believe such techniques are needed to ease the software transition to

a radically different storage interface.

5) How to design system resources such that they can concurrently handle applications/access-

patterns that manipulate persistent data as well as those that manipulate non-persistent

data. (One example recent work [204] tackled the problem of designing effective mem-

ory scheduling policies in the presence of these two different types of applications/access-

patterns.)

6. New Research Challenge 3: Predictable Performance

Since memory is a shared resource between multiple cores (or, agents, threads, or applica-

tions and virtual machines), as shown in Figure 8, different applications contend for bandwidth

and capacity at the different components of the memory system, such as memory controllers, in-

terconnects and caches. As such, memory contention, or memory interference, between different

cores critically affects both the overall system performance and each application’s performance.

Our past work (e.g., [129, 137, 138, 142]) showed that application-unaware design of memory

controllers, and in particular, memory scheduling algorithms, leads to uncontrolled interference

of applications in the memory system. Such uncontrolled interference can lead to denial of service

to some applications [129], low system performance [137, 138, 142], unfair and unpredictable ap-

plication slowdowns [53, 56, 137, 176]. For instance, Figure 9 shows the application slowdowns

when two applications are run together on a simulated two-core system where the two cores

share the main memory (including the memory controllers). The application leslie3d (from the

SPEC CPU2006 suite) slows down significantly due to interference from the co-running applica-

tion. Furthermore, leslie3d’s slowdown depends heavily on the co-running application. It slows

down by 2x when run with gcc, whereas it slows down by more than 5x when run with mcf, an

application that exercises the memory significantly. Our past works have shown that similarly

unpredictable and uncontrollable slowdowns happen in both existing systems (e.g., [88, 129])

and simulated systems (e.g., [53, 56, 137, 138, 142, 176]), across a wide variety of workloads

Building QoS and application awareness into the different components of the memory sys-

tem such as memory controllers, caches, interconnects is important to control interference at

these different components and mitigate/eliminate unfairness and unpredictability. Towards this

end, previous works have explored two different solution directions: 1) to mitigate interference,

thereby reducing application slowdowns and improving overall system performance, 2) to pre-

cisely quantify and control the impact of interference on application slowdowns, thereby pro-

viding performance guarantees to applications that need such guarantees. We discuss these two

different approaches and associated research problems next.

Research Problems and Opportunities in Memory Systems

34 Supercomputing Frontiers and Innovations

Figure 8. A typical multicore system. Reproduced from [133]

 0

 1

 2

 3

 4

 5

 6

leslie3d gcc

S
lo

w
d

o
w

n

a) leslie3d co-running with gcc

 0

 1

 2

 3

 4

 5

 6

leslie3d mcf

S
lo

w
d

o
w

n

b) leslie3d co-running with mcf

Figure 9. High and unpredictable application slowdowns

6.1. Mitigating Interference

In order to mitigate interference at the different components of memory system, two kinds

of approaches have been explored. The resources could be either smart (i.e., aware of threads’

or applications’ interference in memory) or dumb (i.e., unaware of threads’ or applications’

interference in memory) as we describe below.3

6.1.1. Smart Resources

The smart resources approach equips resources (such as memory controllers, intercon-

nects and caches) with the intelligence to 1) be aware of interference characteristics be-

tween applications and 2) prevent unfair application slowdowns and performance degrada-

tion. Several of our past works have taken the smart resources approach and designed QoS-

aware memory controllers [11, 54, 88, 93–95, 105, 130, 137, 138, 142, 176, 177] and inter-

3For the rest of this article, without loss of generality, we use the terms thread and application interchangeably.

From the point of view of a smart resource, the resource needs to be communicated at least the hardware context

identifier of the application/thread that is generating requests to be serviced.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 35

connects [27, 41–43, 64, 66, 67, 128, 147, 148]. Our and other previous works have explored

smart shared cache management policies that 1) allocate shared cache capacity to applications

in a manner that is aware of their cache utility [161, 195], 2) modify the cache replacement

and insertion policies to be aware of the data reuse and memory access behavior of applica-

tions [75, 76, 87, 160, 166, 169]. All these QoS-aware schemes enable resources (such as mem-

ory controllers, interconnects and caches) to detect interference between applications by means

of monitoring their access characteristics and allocate resources such as memory bandwidth,

interconnect link bandwidth and cache capacity to applications so that interference between

applications is mitigated.

We provide several brief examples of the smart resources approach by focusing on QoS-aware

memory controllers [11, 54, 88, 93–95, 105, 130, 137, 138, 142, 176, 177].

Mutlu and Moscibroda [129, 137] devised some of the first fair memory controllers. Their

memory scheduler dynamically estimates the slowdown of each application and prioritizes ap-

plications’ requests in a way that balances the slowdowns. In a later work, Mutlu and Mosci-

broda [138, 142] show that uncontrolled inter-thread interference in the memory controller can

destroy the memory-level parallelism (MLP) [35, 51, 63, 140, 141, 143, 144, 150] and serial-

ize requests of individual threads, leading to significant degradation in both single-thread and

system performance in multi-core/multi-threaded systems. Hence, many techniques devised by

computer architects to parallelize a thread’s memory requests to tolerate memory latency by ex-

ploiting MLP, such as out-of-order execution [151, 152, 185], non-blocking caches [99], runahead

execution [30, 35, 51, 136, 139–141, 143, 144] and other techniques [34, 160, 205], can become

ineffective if the memory controller is not aware of threads. To overcome this and ensure the

memory controller can serve each thread’s requests in parallel, they introduce the idea of thread

ranking, where a memory controller forms a rank order among threads and services threads in

that order. To provide high fairness and starvation freedom, their controller employs batching of

requests, where the memory controller groups oldest requests from each thread into a batch and

services that batch before all other requests. This work, and the associated memory scheduler

PAR-BS (Parallelism-Aware Batch Scheduler) has formed the basis of many future thread-aware

memory scheduling policies by providing relatively simple and effective mechanisms for both per-

formance and fairness in the memory controller.

Kim et al. [93] observe that applications that have received the least service from the memory

controllers in the past, would benefit from quick request service (in the future) and hence, seek to

prioritize such applications’ requests at the memory controller, with the goal of improving system

performance. They propose ATLAS [93], a QoS-aware memory controller design that monitors

and ranks applications based on the amount of service each application receives at the memory

controllers and prioritizes requests of applications with low attained memory service. ATLAS

provides significant performance improvement by prioritizing applications that can benefit the

most from memory service. In a later work, Kim et al. [94, 95], observe that prioritizing between

all applications solely based on one access characteristic, e.g., the attained memory service

in ATLAS, could unfairly slow down some applications: applications that are very memory

intensive can be slowed down disproportionately. To solve this problem, they propose the thread

cluster memory scheduler (TCM) [94, 95], which employs heterogeneous request scheduling

policies for different types of applications: latency-sensitive vs. bandwidth-sensitive, as shown in

Figure 10. TCM classifies applications into two clusters, the low- and high-memory-intensity (or,

latency-sensitive and bandwidth-sensitive) clusters, prioritizes the latency-sensitive cluster, and

Research Problems and Opportunities in Memory Systems

36 Supercomputing Frontiers and Innovations

employs a different policy to rank and prioritize among applications within each cluster, with

the goal of optimizing for both performance and fairness. Results show that TCM can achieve

both high performance and fairness compared to the best schedulers of the time.

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Figure 10. Operation of Thread Cluster Memory Scheduler (TCM). Reproduced from [92]

Most recently, Subramanian et al. [177] propose the blacklisting memory scheduler (BLISS)

based on the observation that it is not necessary to employ a full ordered ranking across all

applications, like PAR-BS, ATLAS and TCM do, because of two key reasons. First, such a full

ordered ranking scheme incurs high hardware complexity. Second, a full ordered ranking of ap-

plications prioritizes some high-memory-intensity applications over other high-memory-intensity

applications, resulting in unfair application slowdowns. Hence, they propose to separate appli-

cations into only two groups (instead of employing a full ranking of threads), one containing

interference-causing applications and the other containing vulnerable-to-interference applica-

tions and prioritize the vulnerable-to-interference group over the interference-causing group.

These groups are formed by monitoring the number of consecutive requests from an appli-

cations and classifying applications that generate more than a certain number of consecutive

requests as interference-causing (this is called blacklisting). Such a scheme not only greatly re-

duces the hardware complexity and critical path latency of the memory scheduler (as it does

not require full ranking of all applications), but also prevents applications from slowing down

unfairly, thereby improving system performance.

It is worth noting that inter-thread interference in the memory controller among threads

of the same application can greatly reduce that application’s performance as well. Ebrahimi et

al. [54] quantify the performance loss due to such interference and propose a new memory con-

troller that dynamically estimates critical threads (or, limiter threads) in an application, which

limit performance, and prioritizes such threads over others. Such an approach that identifies the

most important threads, potentially using various other mechanisms [14, 18, 50, 78, 79, 178–181],

and prioritizes/accelerates them in not only the memory controllers but also other resources is

likely to be promising to improve parallel program performance and efficiency.

The design of memory controllers remains equally, if not more, important in the presence

of persistent memory systems that store and access persistent data through the memory inter-

face (as we discussed in Section 5.3). In fact, in such systems memory writes can become very

frequent as persistent data needs to be flushed to main memory in a strict order determined

by the storage consistency model employed in modern systems [204]. Zhao et al. [204] identified

this problem and showed that existing memory controllers cannot appropriately handle interfer-

ence between applications that access persistent data and applications that access volatile data

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 37

because those that write to persistent data can greatly reduce system performance and fairness

due to scheduling policies that do not take into account write requests. They develop a new

memory scheduling algorithm that provides a solution to this problem by more fairly handling

read and write requests of different applications [204].

Finally, it is critically important to appropriately handle the interference caused by prefetch

requests generated by hardware and software prefetchers employed in almost all modern high

performance systems [69, 174, 183]. Lee et al. [105, 107, 108] show that making the memory

controller dynamically decide between providing equal or lower priority to prefetch requests

compared to demand requests, based on the accuracy of prefetches, can greatly improve sys-

tem performance and fairness. Ebrahimi et al. [55, 57, 58] showed that interference caused by

aggressive prefetchers, even if they are accurate, can cause slowdowns to applications and re-

duce performance. They devise mechanisms to appropriately throttle prefetchers to reduce the

negative effects of the interference caused.

All these past works on QoS-aware and interference-aware memory scheduling have shown

that significant performance and fairness gains are possible by designing the memory controller

to be aware of different threads/applications and different request/access characteristics and

appropriately prioritizing among them. We believe ample opportunity exists for future designs

that can effectively navigate the complex tradeoff space of performance, fairness, hardware

complexity/cost, scheduling latency and energy efficiency. Designs that optimize for three or

more of these metrics at the same time, e.g., in the spirit of BLISS [177], will especially be

desirable in the future and are a promising direction for future research.

A challenge with the smart resources approach is the coordination of resource allocation

decisions across different resources, such as main memory, interconnects and shared caches. To

provide QoS across the entire system, the actions of different resources need to be coordinated.

Several works examined such coordination mechanisms. One example of such a scheme is a

coordinated resource management scheme proposed by Bitirgen et al. [15] that employs machine

learning, specifically, an artificial neural network, to predict each application’s performance for

different possible resource allocations. Resources are then allocated appropriately to different

applications so that a global system performance metric is optimized. Another example of such

a scheme is a recent work by Wang and Martinez [191] that employs a market-dynamics-inspired

mechanism to coordinate allocation decisions across resources. Approaches to coordinate resource

allocation and scheduling decisions across multiple resources in the memory system, whether they

use machine learning, game theory, or feedback based control, are a promising research topic

that offers ample scope for future exploration.

6.1.2. Dumb Resources

The dumb resources approach, rather than modifying the resources themselves to be QoS-

and application-aware, controls the resources and their allocation at different points in the system

(e.g., at the cores/sources or at the system software) so that unfair slowdowns and performance

degradation are mitigated. For instance, Ebrahimi et al. propose Fairness via Source Throttling

(FST) [53, 55, 56], which throttles applications at the source (processor core) to regulate the

number of requests that are sent to the shared caches and main memory from the processor

core. Cheng et al. [32] propose to break down threads into compute and memory tasks and

restrict the number of concurrent memory tasks. Kayiran et al. [85] throttle the thread-level

parallelism of the GPU to mitigate memory contention related slowdowns in heterogeneous

Research Problems and Opportunities in Memory Systems

38 Supercomputing Frontiers and Innovations

architectures consisting of both CPUs and GPUs. Das et al. [40] propose to map applications

to cores (by modifying the application scheduler in the operating system) in a manner that

is aware of the applications’ interconnect and memory access characteristics. Muralidhara et

al. [131] propose to partition memory channels among applications such the data of applications

that interfere significantly with each other are mapped to different memory channels. Other

works [77, 88, 116, 194] build upon [131] and partition banks between applications at a fine-

grained level to prevent different applications’ request streams from interfering at the same

banks. Zhuravlev et al. [206] and Tang et al. [182] propose to mitigate interference by co-

scheduling threads that interact well and interfere less at the shared resources. Kaseridis et

al. [84] propose to interleave data across channels and banks such that threads benefit from

locality in the DRAM row-buffer, while not causing significant interference to each other.

On the interconnect side, there has been a growing body of work on source throttling mech-

anisms [12, 27, 61, 65, 147, 148, 184] that detect congestion or slowdowns within the network

and throttle the injection rates of applications in an application-aware manner to maximize both

system performance and fairness. In heterogeneous architectures consisting of CPUs and GPUs,

similar source throttling approaches can greatly reduce memory congestion and improve both

QoS provided to the CPUs and overall system performance [85]. Kayiran et al. [85] provide a

promising mechanism that can be configured to achieve multiple different performance goals in

such architectures by adapting the number of threads scheduled in the GPU based on memory

congestion and latency tolerance characteristics in the heterogeneous system.

One common characteristic among all these dumb resources approaches is that they regulate

the amount of contention at the caches, interconnects and main memory by controlling their

operation/allocation from a different agent such as the cores, the operating system, or the

memory allocator, while not modifying the resources themselves to be QoS- or application-

aware. This has the advantage of keeping the resources themselves simple, while also potentially

enabling better coordination of allocation decisions across multiple resources. On the other

hand, the disadvantages of the dumb resources approach are that 1) each resource may not

be best utilized to provide the highest performance because it cannot make interference-aware

decisions, 2) monitoring and control mechanisms to understand and decide how to best control

operation/allocation from a different agent than the resources themselves to achieve a particular

goal increase complexity.

6.1.3. Integrated Approaches to QoS and Resource Management

Even though both the smart resources and dumb resources approaches can greatly mitigate

interference and provide QoS in the memory system when employed individually, they each

have advantages and disadvantages that are unique, as we discussed above. Therefore, integrat-

ing the smart resources and dumb resources approaches can enable better interference mitigation

than employing either approach alone by exploiting the advantages of each approach. An early

example of such an integrated resource management approach is the Integrated Memory Parti-

tioning and Scheduling (IMPS) scheme [131], which combines memory channel partitioning in

the operating system (a dumb resource approach) along with simple application-aware memory

request scheduling in the memory controller (a smart resource approach), leading to higher per-

formance than when either approach is employed alone. The key idea of IMPS is to partition

memory channels to mitigate interference between memory-intensive applications while priori-

tizing compute-intensive applications in the memory scheduler. Subramanian et al. [131] show

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 39

that this combined technique improves performance more than either memory channel parti-

tioning or application-aware memory scheduling alone. We believe such combined approaches

will become even more important in the future as memory interference becomes an even more

severe problem than today due to limited memory bandwidth and data-intensive workloads.

Combining different approaches to memory QoS and resource management, both smart and

dumb, with the goal of more effective interference mitigation is therefore a promising area for

future research and exploration.

6.2. Quantifying and Controlling Interference

While several previous works have focused on mitigating interference at the different com-

ponents of a memory system, with the goals of improving performance and preventing unfair

application slowdowns, few previous works have focused on precisely quantifying and controlling

the impact of interference on application slowdowns, with the goal of providing soft or hard

performance guarantees. An application’s susceptibility to interference and, consequently, its

performance, depends on which other applications it is sharing resources with: an application

can sometimes have very high performance and at other times very low performance on the

same system, solely depending on its co-runners (as we have already discussed in Section 6

and shown an example in Figure 9). Therfore a critical research challenge is how to design the

memory system (including all shared resources such as main memory, caches, and interconnects)

so that 1) the performance of each application is predictable and controllable, and performance

requirements of each application are satisfied, while 2) the performance and efficiency of the

entire system are as high as needed or possible.

A promising solution direction to address this predictable performance challenge is to devise

mechanisms that are effective and accurate at 1) estimating and predicting application perfor-

mance in the presence of inter-application interference in a dynamic system with continuously

incoming and outgoing applications, and 2) enforcing end-to-end performance guarantees within

the entire shared memory system. We discuss briefly several prior works that took some of the

first steps to achieve these goals and conclude with some promising future directions to pursue.

Stall Time Fair Memory Scheduling (STFM) [137] is one of the first works on estimating the

impact of inter-application memory interference on application performance. STFM estimates

the impact of memory interference at the main memory alone on application slowdowns. It

does so by estimating the impact of delaying every individual request of an application on its

slowdown. Fairness via Source Throttling (FST) [53, 56] and Per-Thread Cycle Accounting [49]

employ a scheme similar to STFM to estimate the impact of main memory interference, while also

taking into account interference at the shared caches. While these approaches are good starting

points towards addressing the challenge of estimating and predicting application slowdowns in

the presence of memory interference, our recent work [176] observed that the slowdown estimates

from STFM, FST and Per-Thread Cycle Accounting are relatively inaccurate since they estimate

interference at an individual request granularity. As a result, such schemes may not only be able

to provide strict performance guarantees but also become complex due to the hardware needed

to track interference on an individual request granularity.

We have recently designed a simple method, called MISE (Memory-interference Induced

Slowdown Estimation) [176], for estimating application slowdowns accurately in the presence of

main memory interference. We observe that an application’s aggregate memory request service

rate is a good proxy for its performance, as depicted in Figure 11, which shows the measured

Research Problems and Opportunities in Memory Systems

40 Supercomputing Frontiers and Innovations

performance versus memory request service rate for three applications on a real system [176].

As such, an application’s slowdown can be accurately estimated by estimating its uninterfered

request service rate, which can be done by prioritizing that application’s requests in the memory

system during some execution intervals. Results show that average error in slowdown estimation

with this relatively simple technique is approximately 8% across a wide variety of workloads.

Figure 12 shows the actual versus predicted slowdowns over time, for astar, a representative

application from among the many applications examined, when it is run alongside three other

applications on a simulated 4-core system. As we can see, MISE’s slowdown estimates track the

actual measured slowdown closely.

We believe these works on accurately estimating application slowdowns and providing pre-

dictable performance in the presence of memory interference have just scratched the surface of

a critically important research direction. Designing predictable computing systems is a Grand

Research Challenge, as identified by the Computing Research Association [37]. Many future

ideas in this direction seem promising. We discuss some of them briefly. First, extending such

simple performance estimation techniques like MISE [176] to the entire memory and storage

system is a promising area of future research in both homogeneous and heterogeneous systems.

Second, estimating and bounding memory slowdowns for hard real-time performance guaran-

tees, as recently discussed by Kim et al. [88], is similarly promising. Third, devising memory

devices, architectures and interfaces that can support better predictability and QoS also ap-

pears promising. Some key exciting research questions include, but are by no means limited

to, the following: How sensitive are different applications to memory, interconnect and storage

bandwidth? How does this sensitivity vary with the memory/storage/interconnect technology?

How sensitive are applications to memory/cache/storage capacity? How do we take into ac-

count sensitivity to different resources such as cache/memory/storage capacity and bandwidth

in estimating application slowdowns? How can we estimate slowdowns in heterogeneous systems

consisting of CPUs, GPUs and hardware accelerators?

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
.

P
e

rf
o

rm
a

n
c
e

(n
o

rm
.

to
 p

e
rf

o
rm

a
n

c
e

w
h

e
n

 r
u

n
 a

lo
n

e
)

Norm. Request Service Rate
(norm. to request service rate

when run alone)

mcf
omnetpp

astar

Figure 11. Request service rate vs. performance.

Reproduced from [176]

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40

S
lo

w
d
o
w

n

Million Cycles

Actual
Our Model

Figure 12. Actual vs. predicted slowdowns with MISE.

Reproduced from [176]

Once accurate slowdown estimates are available, they can be leveraged in multiple possible

ways. One possible use case is to leverage them in the hardware to allocate just enough re-

sources to an application so that its performance requirements are met. We demonstrate such a

scheme for memory bandwidth allocation showing that applications’ performance/slowdown re-

quirements can be effectively met by leveraging slowdown estimates from the MISE model [176].

There are several other ways in which slowdown estimates can be leveraged in both the hard-

ware and the software to achieve various system-level goals. For instance, accurate slowdown

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 41

estimates can be used to drive fair pricing schemes based on slowdowns, rather than just re-

source allocation, in a cloud computing setting [1, 2]. Slowdown estimates can also be used to

consolidate virtual machines onto physical hosts so that applications are not unfairly slowed

down, through virtual machine migration and admission control schemes [68, 117, 182]. These

and other potential schemes to leverage accurate slowdown estimates are promising directions

to explore.

7. Flash Memory Scaling Challenges

We discuss briefly the challenges of scaling the major component of the storage subsys-

tem, flash memory. Flash memory is arguably the most successful charge-based memory (like

DRAM) that has been employed as part of the storage system. Its benefits over hard disks are

clear: greatly lower latencies, greatly higher bandwidth and much higher reliability due to the

lack of mechanical components. These have lead to the successful adoption of flash memory

in modern systems across the board, to the point of replacing hard disk drives completely in

space-constrained environments, e.g., laptop computers.

Our discussion in this section will be limited to some key challenges in improving the reliabil-

ity and lifetime of flash memory, which we have been exploring in our recent research. Note that

many other challenges exist, including but not limited to the following: 1) making the storage

stack much higher performance to take advantage of the low latency and high parallelism of raw

flash devices [189] (similarly to what we discussed in Section 5.3 with respect to the Persistent

Memory Manager), 2) providing transactional support in the flash translation layer for better

system performance and flexibility [120], 3) taking advantage of application- and system-level

information to manage flash memory in a way that improves performance, efficiency, lifetime

and cost. These are great research directions to explore, but, for brevity, we will not discuss

them in further detail.

In part of our research, we aim to develop new techniques that overcome reliability and

endurance challenges of flash memory to enable its scaling beyond the 20nm technology genera-

tions. To this end, we experimentally measure, characterize, analyze, and model error patterns

that occur in existing flash chips, using an experimental flash memory testing and characteri-

zation platform [19]. Based on the understanding we develop from our experiments, we aim to

develop error management techniques that mitigate the fundamental types of errors that are

likely to increase as flash memory scales.

We have recently experimentally characterized complex flash errors that occur at 30-40nm

flash technologies [20], categorizing them into four types: retention errors, program interference

errors, read errors, and erase errors. Our characterization shows the relationship between various

types of errors and demonstrates empirically using real 3x-nm flash chips that retention errors

are the most dominant error type. Our results demonstrate that different flash errors have

distinct patterns: retention errors and program interference errors are program/erase-(P/E)-

cycle-dependent, memory-location-dependent, and data-value-dependent. Since the observed er-

ror patterns are due to fundamental circuit and device behavior inherent in flash memory, we

expect our observations and error patterns to also hold in flash memories beyond 30-nm tech-

nology.

Based on our experimental characterization results that show that the retention errors are

the most dominant errors, we have developed a suite of techniques to mitigate the effects of such

errors, called Flash Correct-and-Refresh (FCR) [21]. The key idea is to periodically read each

Research Problems and Opportunities in Memory Systems

42 Supercomputing Frontiers and Innovations

page in flash memory, correct its errors using simple error correcting codes (ECC), and either

remap (copy/move) the page to a different location or reprogram it in its original location by

recharging the floating gates, before the page accumulates more errors than can be corrected

with simple ECC. Our simulation experiments using real I/O workload traces from a variety

of file system, database, and search applications show that FCR can provide 46x flash memory

lifetime improvement at only 1.5% energy overhead, with no additional hardware cost.

We have also experimentally investigated and characterized the threshold voltage distribu-

tion of different logical states in MLC NAND flash memory [24]. We have developed new models

that can predict the shifts in the threshold voltage distribution based on the number of P/E

cycles endured by flash memory cells. Our data shows that the threshold voltage distribution

of flash cells that store the same value can be approximated, with reasonable accuracy, as a

Gaussian distribution. The threshold voltage distribution of flash cells that store the same value

gets distorted as the number of P/E cycles increases, causing threshold voltages of cells storing

different values to overlap with each other, which can lead to the incorrect reading of values of

some cells as flash cells accumulate P/E cycles. We find that this distortion can be accurately

modeled and predicted as an exponential function of the P/E cycles, with more than 95% accu-

racy. Such predictive models can aid the design of more sophisticated error correction methods,

such as LDPC codes [62], which are likely needed for reliable operation of future flash memories.

We are currently investigating another increasingly significant obstacle to MLC NAND

flash scaling, which is the increasing cell-to-cell program interference due to increasing parasitic

capacitances between the cells’ floating gates. Accurate characterization and modeling of this

phenomenon are needed to find effective techniques to combat program interference. In recent

work [23], we leverage the read retry mechanism found in some flash designs to obtain measured

threshold voltage distributions from state-of-the-art 2Y-nm (i.e., 24-20 nm) MLC NAND flash

chips. These results are then used to characterize the cell-to-cell program interference under

various programming conditions. We show that program interference can be accurately modeled

as additive noise following Gaussian-mixture distributions, which can be predicted with 96.8%

accuracy using linear regression models. We use these models to develop and evaluate a read

reference voltage prediction technique that reduces the raw flash bit error rate by 64% and

increases the flash lifetime by 30%. More details can be found in Cai et al. [23].

To improve flash memory lifetime, we have developed a mechanism called Neighbor-Cell

Assisted Correction (NAC) [25], which uses the value information of cells in a neighboring page

to correct errors found on a page when reading. This mechanism takes advantage of the new

empirical observation that identifying the value stored in the immediate-neighbor cell makes it

easier to determine the data value stored in the cell that is being read. The key idea is to re-read

a flash memory page that fails error correction codes (ECC) with the set of read reference voltage

values corresponding to the conditional threshold voltage distribution assuming a neighbor cell

value and use the re-read values to correct the cells that have neighbors with that value. Our

simulations show that NAC effectively improves flash memory lifetime by 33% while having no

(at nominal lifetime) or very modest (less than 5% at extended lifetime) performance overhead.

Most recently, we have provided a rigorous characterization of retention errors in NAND flash

memory devices and new techniques to take advantage of this characterization to improve flash

memory lifetime [26]. We have extensively characterized how the threshold voltage distribution

of flash memory changes under different retention age, i.e., the length of time since a flash cell

is programmed. We observe from our characterization results that 1) the optimal read reference

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 43

voltage of a flash cell, at which the data can be read with the lowest raw bit error rate (RBER),

systematically changes with the cell’s retention age and 2) different regions of flash memory can

have different retention ages, and hence different optimal read reference voltages. Based on these

observations, we propose a new technique to learn and apply the optimal read reference voltage

online (called retention optimized reading). Our evaluations show that our technique can extend

flash memory lifetime by 64% and reduce average error correction latency by 7% with only

a 768 KB storage overhead in flash memory for a 512 GB flash-based SSD. We also propose a

technique to recover data with uncorrectable errors by identifying and probabilistically correcting

flash cells with retention errors. Our evaluation shows that this technique can effectively recover

data from uncorrectable flash errors and reduce RBER by 50%. More detail can be found in Cai

et al. [26].

These works, to our knowledge, are the first open-literature works that 1) characterize var-

ious aspects of real state-of-the-art flash memory chips, focusing on reliability and scaling chal-

lenges, and 2) exploit the insights developed from these characterizations to develop new mech-

anisms that can improve flash memory reliability and lifetime. We believe such an experimental-

and characterization-based approach (which we also employ for DRAM [86, 97, 110, 115], as we

discussed in Section 4) to developing novel techniques for both existing and emerging memory

technologies is critically important as it 1) provides a solid basis (i.e., real data from modern

devices) on which future analyses and new techniques can be based, 2) reveals new scaling trends

in modern devices, pointing to important challenges in the field, and 3) equips the research com-

munity with reliable models and analyses that can be openly used to innovate in areas where

experimental information is usually scarce in the open literature due to heavy competition within

industry, thereby enhancing research and investigation in areas that are previously deemed to

be difficult to research.

Going forward, we believe more accurate and detailed characterization of flash memory error

mechanisms is needed to devise models that can aid the design of even more efficient and effective

mechanisms to tolerate errors found in sub-20nm flash memories. A promising direction is the

design of predictive models that the system (e.g., the flash controller or system software) can

use to proactively estimate the occurrence of errors and take action to prevent the error before

it happens. Flash-correct-and-refresh [21], read reference voltage prediction [23], and retention

optimized reading [26] mechanisms, described earlier, are early forms of such predictive error

tolerance mechanisms. Methods for exploiting application and memory access characteristics

to optimize flash performance, energy, lifetime and cost are also very promising to explore.

We believe there is a bright future ahead for more aggressive and effective application- and

data-characteristic-aware management mechanisms for flash memory (just like for DRAM and

emerging memory technologies). Such techniques will likely aid effective scaling of flash memory

technology into the future.

8. Conclusion

We have described several research directions and ideas to enhance memory scaling via sys-

tem and architecture-level approaches. We believe there are three key fundamental principles

that are essential for memory scaling: 1) better cooperation between devices, system, and soft-

ware, i.e., the efficient exposure of richer information up and down the layers of the system stack

with the development of more flexible yet abstract interfaces that can scale well into the future ,

2) better-than-worst-case design, i.e., design of the memory system such that it is optimized for

Research Problems and Opportunities in Memory Systems

44 Supercomputing Frontiers and Innovations

the common case instead of the worst case, 3) heterogeneity in design, i.e., the use of heterogene-

ity at all levels in memory system design to enable the optimization of multiple metrics at the

same time. We believe these three principles are related and sometimes coupled. For example, to

exploit heterogeneity in the memory system, we may need to enable better cooperation between

the devices and the system, e.g., as in the case of heterogeneous DRAM refresh rates [114],

tiered-latency DRAM [109], heterogeneous-reliability memory [122], locality-aware management

of hybrid memory systems [201] and the persistent memory manager for a heterogeneous array

of memory/storage devices [127], five of the many ideas we have discussed in this paper.

We have shown that a promising approach to designing scalable memory systems is the co-

design of memory and other system components to enable better system optimization. Enabling

better cooperation across multiple levels of the computing stack, including software, microar-

chitecture, and devices can help scale the memory system by exposing more of the memory

device characteristics to higher levels of the system stack such that the latter can tolerate and

exploit such characteristics. Finally, heterogeneity in the design of the memory system can help

overcome the memory scaling challenges at the device level by enabling better specialization of

the memory system and its dynamic adaptation to different demands of various applications.

We believe such system-level and integrated approaches will become increasingly important and

effective as the underlying memory technology nears its scaling limits at the physical level and

envision a near future full of innovation in main memory architecture, enabled by the co-design

of the system and main memory.

Acknowledgments

The source code and data sets of some of the works we have discussed or alluded to (e.g., [9,

86, 97, 111, 153, 166, 196]) are available under open source software license at our research

group, SAFARI’s, tools website [3].

We would like to thank Rachata Ausavarungnirun for logistic help in preparing this article

and earlier versions of it. Many thanks to all students in the SAFARI research group and collab-

orators at Carnegie Mellon as well as other universities, whom have contributed to the various

works outlined in this article. Thanks also go to our research group’s industrial sponsors over

the past six years, including AMD, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle,

Qualcomm, Samsung. Some of the research reported here was also partially supported by GSRC,

Intel URO Memory Hierarchy Program, Intel Science and Technology Center on Cloud Com-

puting, NIH, NSF, and SRC. In particular, NSF grants 0953246, 1065112, 1147397, 1212962,

1320531, 1409723, 1423172 have supported parts of the research we have described.

This article is a significantly extended and revised version of an invited paper that ap-

peared at the 5th International Memory Workshop [133], which was also presented at MemCon

2013 [134]. Part of the structure of this article is based on an evolving set of talks Onur Mutlu

has delivered at various venues on Scaling the Memory System in the Many-Core Era and Re-

thinking Memory System Design for Data-Intensive Computing between 2010-2015, including

invited talks at the 2011 International Symposium on Memory Management and ACM SIG-

PLAN Workshop on Memory System Performance and Correctness [135] and the 2012 DAC

More Than Moore Technologies Workshop. Section 7 of this article is a significantly extended

and revised version of the introduction of an invited article that appeared in a special issue of

the Intel Technology Journal, titled Error Analysis and Retention-Aware Error Management for

NAND Flash Memory [22].

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 45

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Amazon EC2, http://aws.amazon.com/ec2/pricing/.

2. Microsoft Azure, http://azure.microsoft.com/en-us/pricing/details/virtual-machines/.

3. “SAFARI tools,” https://www.ece.cmu.edu/∼safari/tools.html.

4. “International technology roadmap for semiconductors (ITRS),” 2011.

5. Hybrid Memory Consortium, 2012, http://www.hybridmemorycube.org.

6. Top 500, 2013, http://www.top500.org/featured/systems/tianhe-2/.

7. J.-H. Ahn et al., “Adaptive self refresh scheme for battery operated high-density mobile

DRAM applications,” in ASSCC, 2006.

8. A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for high-performance

processors,” in ISCA, 2004.

9. C. Alkan et al., “Personalized copy-number and segmental duplication maps using next-

generation sequencing,” in Nature Genetics, 2009.

10. G. Atwood, “Current and emerging memory technology landscape,” in Flash Memory

Summit, 2011.

11. R. Ausavarungnirun et al., “Staged memory scheduling: Achieving high performance and

scalability in heterogeneous systems,” in ISCA, 2012.

12. R. Ausavarungnirun et al., “Design and evaluation of hierarchical rings with deflection

routing,” in SBAC-PAD, 2014.

13. S. Balakrishnan and G. S. Sohi, “Exploiting value locality in physical register files,” in

MICRO, 2003.

14. A. Bhattacharjee and M. Martonosi, “Thread criticality predictors for dynamic perfor-

mance, power, and resource management in chip multiprocessors,” in ISCA, 2009.

15. R. Bitirgen et al., “Coordinated management of multiple interacting resources in CMPs:

A machine learning approach,” in MICRO, 2008.

16. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communica-

tions of the ACM, vol. 13, no. 7, 1970.

17. R. Bryant, “Data-intensive supercomputing: The case for DISC,” CMU CS Tech. Report

07-128, 2007.

18. Q. Cai et al., “Meeting points: Using thread criticality to adapt multicore hardware to

parallel regions,” in PACT, 2008.

19. Y. Cai et al., “FPGA-based solid-state drive prototyping platform,” in FCCM, 2011.

20. Y. Cai et al., “Error patterns in MLC NAND flash memory: Measurement, characteriza-

tion, and analysis,” in DATE, 2012.

21. Y. Cai et al., “Flash Correct-and-Refresh: Retention-aware error management for increased

flash memory lifetime,” in ICCD, 2012.

Research Problems and Opportunities in Memory Systems

46 Supercomputing Frontiers and Innovations

22. Y. Cai et al., “Error analysis and retention-aware error management for NAND flash mem-

ory,” Intel technology Journal, vol. 17, no. 1, May 2013.

23. Y. Cai et al., “Program interference in MLC NAND flash memory: Characterization,

modeling, and mitigation,” in ICCD, 2013.

24. Y. Cai et al., “Threshold voltage distribution in MLC NAND flash memory: Characteri-

zation, analysis and modeling,” in DATE, 2013.

25. Y. Cai et al., “Neighbor-cell assisted error correction for MLC NAND flash memories,” in

SIGMETRICS, 2014.

26. Y. Cai et al., “Data retention in MLC NAND flash memory: Characterization, optimization

and recovery,” in HPCA, 2015.

27. K. Chang et al., “HAT: Heterogeneous adaptive throttling for on-chip networks,” in SBAC-

PAD, 2012.

28. K. Chang et al., “Improving DRAM performance by parallelizing refreshes with accesses,”

in HPCA, 2014.

29. N. Chatterjee et al., “Leveraging heterogeneity in DRAM main memories to accelerate

critical word access,” in MICRO, 2012.

30. S. Chaudhry et al., “High-performance throughput computing,” IEEE Micro, vol. 25, no. 6,

2005.

31. E. Chen et al., “Advances and future prospects of spin-transfer torque random access

memory,” IEEE Transactions on Magnetics, vol. 46, no. 6, 2010.

32. H.-Y. Cheng et al., “Memory latency reduction via thread throttling,” in MICRO, 2010.

33. S. Chhabra and Y. Solihin, “i-NVMM: a secure non-volatile main memory system with

incremental encryption,” in ISCA, 2011.

34. Y. Chou et al., “Store memory-level parallelism optimizations for commercial applications,”

in MICRO, 2005.

35. Y. Chou et al., “Microarchitecture optimizations for exploiting memory-level parallelism,”

in ISCA, 2004.

36. E. Chung et al., “Single-chip heterogeneous computing: Does the future include custom

logic, FPGAs, and GPUs?” in MICRO, 2010.

37. Grand Research Challenges in Information Systems, Computing Research Association,

http://www.cra.org/reports/gc.systems.pdf.

38. J. Condit et al., “Better I/O through byte-addressable, persistent memory,” in SOSP, 2009.

39. K. V. Craeynest et al., “Scheduling heterogeneous multi-cores through performance impact

estimation (PIE),” in ISCA, 2012.

40. R. Das et al., “Application-to-core mapping policies to reduce memory system interference

in multi-core systems,” in HPCA, 2013.

41. R. Das et al., “Application-aware prioritization mechanisms for on-chip networks,” in MI-

CRO, 2009.

42. R. Das et al., “Aergia: Exploiting packet latency slack in on-chip networks,” in ISCA,

2010.

43. R. Das et al., “Aergia: A network-on-chip exploiting packet latency slack,” IEEE Micro

(TOP PICKS Issue), vol. 31, no. 1, 2011.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 47

44. H. David et al., “Memory power management via dynamic voltage/frequency scaling,” in

ICAC, 2011.

45. J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2,

2013.

46. Q. Deng et al., “MemScale: active low-power modes for main memory,” in ASPLOS, 2011.

47. G. Dhiman et al., “PDRAM: A hybrid PRAM and DRAM main memory system,” in DAC,

2009.

48. X. Dong et al., “Leveraging 3D PCRAM technologies to reduce checkpoint overhead for

future exascale systems,” in SC, 2009.

49. K. Du Bois et al., “Per-thread cycle accounting in multicore processors,” TACO, 2013.

50. K. Du Bois et al., “Criticality stacks: Identifying critical threads in parallel programs using

synchronization behavior,” in ISCA, 2013.

51. J. Dundas and T. Mudge, “Improving data cache performance by pre-executing instructions

under a cache miss,” in ICS, 1997.

52. J. Dusser et al., “Zero-content augmented caches,” in ICS, 2009.

53. E. Ebrahimi et al., “Fairness via source throttling: a configurable and high-performance

fairness substrate for multi-core memory systems,” in ASPLOS, 2010.

54. E. Ebrahimi et al., “Parallel application memory scheduling,” in MICRO, 2011.

55. E. Ebrahimi et al., “Prefetch-aware shared-resource management for multi-core systems,”

in ISCA, 2011.

56. E. Ebrahimi et al., “Fairness via source throttling: a configurable and high-performance

fairness substrate for multi-core memory systems,” TOCS, 2012.

57. E. Ebrahimi et al., “Techniques for bandwidth-efficient prefetching of linked data structures

in hybrid prefetching systems,” in HPCA, 2009.

58. E. Ebrahimi et al., “Coordinated control of multiple prefetchers in multi-core systems,” in

MICRO, 2009.

59. M. Ekman, “A robust main-memory compression scheme,” in ISCA, 2005.

60. S. Eyerman and L. Eeckhout, “Modeling critical sections in amdahl’s law and its implica-

tions for multicore design,” in ISCA, 2010.

61. C. Fallin et al., “CHIPPER: a low-complexity bufferless deflection router,” in HPCA, 2011.

62. R. Gallager, “Low density parity check codes,” 1963, MIT Press.

63. A. Glew, “MLP yes! ILP no!” in ASPLOS Wild and Crazy Idea Session, Oct. 1998.

64. B. Grot et al., “Kilo-NOC: A heterogeneous network-on-chip architecture for scalability

and service guarantees,” in ISCA, 2011.

65. B. Grot et al., “Regional congestion awareness for load balance in networks-on-chip,” in

HPCA, 2008.

66. B. Grot et al., “Preemptive virtual clock: A flexible, efficient, and cost-effective QOS

scheme for networks-on-chip,” in MICRO, 2009.

67. B. Grot et al., “Topology-aware quality-of-service support in highly integrated chip multi-

processors,” in WIOSCA, 2010.

Research Problems and Opportunities in Memory Systems

48 Supercomputing Frontiers and Innovations

68. A. Gulati et al., “VMware distributed resource management: Design, implementation, and

lessons learned,” VMware Technical Journal, 2012.

69. G. Hinton et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology

Journal, Feb. 2001, Q1 2001 Issue.

70. S. Hong, “Memory technology trend and future challenges,” in IEDM, 2010.

71. E. Ipek et al., “Self-optimizing memory controllers: A reinforcement learning approach,”

in ISCA, 2008.

72. C. Isen and L. K. John, “Eskimo: Energy savings using semantic knowledge of inconse-

quential memory occupancy for DRAM subsystem,” in MICRO, 2009.

73. R. Iyer, “CQoS: a framework for enabling QoS in shared caches of CMP platforms,” in

ICS, 2004.

74. R. Iyer et al., “QoS policies and architecture for cache/memory in CMP platforms,” in

SIGMETRICS, 2007.

75. A. Jaleel et al., “Adaptive insertion policies for managing shared caches,” in PACT, 2008.

76. A. Jaleel et al., “High performance cache replacement using re-reference interval predic-

tion,” in ISCA, 2010.

77. M. K. Jeong et al., “Balancing DRAM locality and parallelism in shared memory CMP

systems,” in HPCA, 2012.

78. J. A. Joao et al., “Bottleneck identification and scheduling in multithreaded applications,”

in ASPLOS, 2012.

79. J. A. Joao et al., “Utility-based acceleration of multithreaded applications on asymmetric

CMPs,” in ISCA, 2013.

80. A. Jog et al., “Orchestrated scheduling and prefetching for GPGPUs,” in ISCA, 2013.

81. A. Jog et al., “OWL: Cooperative thread array aware scheduling techniques for improving

GPGPU performance,” in ASPLOS, 2013.

82. T. L. Johnson et al., “Run-time spatial locality detection and optimization,” in MICRO,

1997.

83. U. Kang et al., “Co-architecting controllers and DRAM to enhance DRAM process scaling,”

in The Memory Forum, 2014.

84. D. Kaseridis et al., “Minimalist open-page: A DRAM page-mode scheduling policy for the

many-core era,” in MICRO, 2011.

85. O. Kayiran et al., “Managing GPU concurrency in heterogeneous architectures,” in MI-

CRO, 2014.

86. S. Khan et al., “The efficacy of error mitigation techniques for DRAM retention failures:

A comparative experimental study,” in SIGMETRICS, 2014.

87. S. Khan et al., “Improving cache performance by exploiting read-write disparity,” in HPCA,

2014.

88. H. Kim et al., “Bounding memory interference delay in COTS-based multi-core systems,”

in RTAS, 2014.

89. J. Kim and M. C. Papaefthymiou, “Dynamic memory design for low data-retention power,”

in PATMOS, 2000.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 49

90. K. Kim, “Future memory technology: challenges and opportunities,” in VLSI-TSA, 2008.

91. K. Kim et al., “A new investigation of data retention time in truly nanoscaled DRAMs.”

IEEE Electron Device Letters, vol. 30, no. 8, Aug. 2009.

92. Y. Kim, “Thread cluster memory scheduling: Exploiting differences in memory access

behavior,” in Talk at MICRO, 2010.

93. Y. Kim et al., “ATLAS: a scalable and high-performance scheduling algorithm for multiple

memory controllers,” in HPCA, 2010.

94. Y. Kim et al., “Thread cluster memory scheduling: Exploiting differences in memory access

behavior,” in MICRO, 2010.

95. Y. Kim et al., “Thread cluster memory scheduling,” IEEE Micro (TOP PICKS Issue),

vol. 31, no. 1, 2011.

96. Y. Kim et al., “A case for subarray-level parallelism (SALP) in DRAM,” in ISCA, 2012.

97. Y. Kim et al., “Flipping bits in memory without accessing them: An experimental study

of DRAM disturbance errors,” in ISCA, 2014.

98. Y. Koh, “NAND flash scaling beyond 20nm,” in IMW, 2009.

99. D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in ISCA, 1981.

100. E. Kultursay et al., “Evaluating STT-RAM as an energy-efficient main memory alterna-

tive,” in ISPASS, 2013.

101. S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches using spatial foot-

prints,” in ISCA, 1998.

102. B. C. Lee et al., “Architecting phase change memory as a scalable DRAM alternative,” in

ISCA, 2009.

103. B. C. Lee et al., “Phase change memory architecture and the quest for scalability,” Com-

munications of the ACM, vol. 53, no. 7, 2010.

104. B. C. Lee et al., “Phase change technology and the future of main memory,” IEEE Micro

(TOP PICKS Issue), vol. 30, no. 1, 2010.

105. C. J. Lee et al., “Prefetch-aware DRAM controllers,” in MICRO, 2008.

106. C. J. Lee et al., “DRAM-aware last-level cache writeback: Reducing write-caused interfer-

ence in memory systems,” HPS, UT-Austin, Tech. Rep. TR-HPS-2010-002, 2010.

107. C. J. Lee et al., “Prefetch-aware memory controllers,” TC, vol. 60, no. 10, 2011.

108. C. J. Lee et al., “Improving memory bank-level parallelism in the presence of prefetching,”

in MICRO, 2009.

109. D. Lee et al., “Tiered-latency DRAM: A low latency and low cost DRAM architecture,”

in HPCA, 2013.

110. D. Lee et al., “Adaptive-latency DRAM: Optimizing DRAM timing for the common-case,”

in HPCA, 2015.

111. D. Lee et al., “Fast and accurate mapping of complete genomics reads,” in Methods, 2014.

112. C. Lefurgy et al., “Energy management for commercial servers,” in IEEE Computer, 2003.

113. K. Lim et al., “Disaggregated memory for expansion and sharing in blade servers,” in

ISCA, 2009.

114. J. Liu et al., “RAIDR: Retention-aware intelligent DRAM refresh,” in ISCA, 2012.

Research Problems and Opportunities in Memory Systems

50 Supercomputing Frontiers and Innovations

115. J. Liu et al., “An experimental study of data retention behavior in modern DRAM devices:

Implications for retention time profiling mechanisms,” in ISCA, 2013.

116. L. Liu et al., “A software memory partition approach for eliminating bank-level interference

in multicore systems,” in PACT, 2012.

117. M. Liu and T. Li, “Optimizing virtual machine consolidation performance on NUMA server

architecture for cloud workloads,” in ISCA, 2014.

118. S. Liu et al., “Flikker: saving DRAM refresh-power through critical data partitioning,” in

ASPLOS, 2011.

119. G. Loh, “3D-stacked memory architectures for multi-core processors,” in ISCA, 2008.

120. Y. Lu et al., “LightTx: A lightweight transactional design in flash-based SSDs to support

flexible transactions,” in ICCD, 2013.

121. Y. Lu et al., “Loose-ordering consistency for persistent memory,” in ICCD, 2014.

122. Y. Luo et al., “Characterizing application memory error vulnerability to optimize data

center cost via heterogeneous-reliability memory,” in DSN, 2014.

123. A. Maislos et al., “A new era in embedded flash memory,” in FMS, 2011.

124. J. Mandelman et al., “Challenges and future directions for the scaling of dynamic random-

access memory (DRAM),” in IBM JR&D, vol. 46, 2002.

125. J. Meza et al., “A case for small row buffers in non-volatile main memories,” in ICCD,

2012.

126. J. Meza et al., “Enabling efficient and scalable hybrid memories using fine-granularity

DRAM cache management,” IEEE CAL, 2012.

127. J. Meza et al., “A case for efficient hardware-software cooperative management of storage

and memory,” in WEED, 2013.

128. A. Mishra et al., “A heterogeneous multiple network-on-chip design: An application-aware

approach,” in DAC, 2013.

129. T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of memory service in

multi-core systems,” in USENIX Security, 2007.

130. T. Moscibroda and O. Mutlu, “Distributed order scheduling and its application to multi-

core DRAM controllers,” in PODC, 2008.

131. S. Muralidhara et al., “Reducing memory interference in multi-core systems via application-

aware memory channel partitioning,” in MICRO, 2011.

132. O. Mutlu, “Asymmetry everywhere (with automatic resource management),” in CRA

Workshop on Advanced Computer Architecture Research, 2010.

133. O. Mutlu, “Memory scaling: A systems architecture perspective,” in IMW, 2013.

134. O. Mutlu, “Memory scaling: A systems architecture perspective,” in MemCon, 2013.

135. O. Mutlu et al., “Memory systems in the many-core era: Challenges, opportuni-

ties, and solution directions,” in ISMM, 2011, http://users.ece.cmu.edu/∼omutlu/pub/

onur-ismm-mspc-keynote-june-5-2011-short.pptx.

136. O. Mutlu et al., “Address-value delta (AVD) prediction: A hardware technique for effi-

ciently parallelizing dependent cache misses,” IEEE Transactions on Computers, vol. 55,

no. 12, Dec. 2006.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 51

137. O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for chip multipro-

cessors,” in MICRO, 2007.

138. O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing both per-

formance and fairness of shared DRAM systems,” in ISCA, 2008.

139. O. Mutlu et al., “Address-value delta (AVD) prediction: Increasing the effectiveness of

runahead execution by exploiting regular memory allocation patterns,” in MICRO, 2005.

140. O. Mutlu et al., “Techniques for efficient processing in runahead execution engines,” in

ISCA, 2005.

141. O. Mutlu et al., “Efficient runahead execution: Power-efficient memory latency tolerance,”

IEEE Micro (TOP PICKS Issue), vol. 26, no. 1, 2006.

142. O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enabling high-

performance and fair memory controllers,” IEEE Micro (TOP PICKS Issue), vol. 29,

no. 1, 2009.

143. O. Mutlu et al., “Runahead execution: An alternative to very large instruction windows

for out-of-order processors,” in HPCA, 2003.

144. O. Mutlu et al., “Runahead execution: An effective alternative to large instruction win-

dows,” IEEE Micro (TOP PICKS Issue), vol. 23, no. 6, 2003.

145. P. J. Nair et al., “ArchShield: Architectural framework for assisting DRAM scaling by

tolerating high error rates,” in ISCA, 2013.

146. V. Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” in MICRO, 2011.

147. G. Nychis et al., “Next generation on-chip networks: What kind of congestion control do

we need?” in HotNets, 2010.

148. G. Nychis et al., “On-chip networks from a networking perspective: Congestion and scal-

ability in many-core interconnects,” in SIGCOMM, 2012.

149. T. Ohsawa et al., “Optimizing the DRAM refresh count for merged DRAM/logic LSIs,” in

ISLPED, 1998.

150. V. S. Pai and S. Adve, “Code transformations to improve memory parallelism,” in MICRO,

1999.

151. Y. N. Patt et al., “HPS, a new microarchitecture: Rationale and introduction,” in MICRO,

1985.

152. Y. N. Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,”

in MICRO, 1985.

153. G. Pekhimenko et al., “Base-delta-immediate compression: A practical data compression

mechanism for on-chip caches,” in PACT, 2012.

154. G. Pekhimenko et al., “Linearly compressed pages: A main memory compression framework

with low complexity and low latency.” in MICRO, 2013.

155. G. Pekhimenko et al., “Exploiting compressed block size as an indicator of future reuse,”

in HPCA, 2015.

156. S. Phadke and S. Narayanasamy, “MLP aware heterogeneous memory system,” in DATE,

2011.

Research Problems and Opportunities in Memory Systems

52 Supercomputing Frontiers and Innovations

157. M. K. Qureshi et al., “Line distillation: Increasing cache capacity by filtering unused words

in cache lines,” in HPCA, 2007.

158. M. K. Qureshi et al., “Enhancing lifetime and security of phase change memories via start-

gap wear leveling.” in MICRO, 2009.

159. M. K. Qureshi et al., “Scalable high performance main memory system using phase-change

memory technology,” in ISCA, 2009.

160. M. K. Qureshi et al., “A case for MLP-aware cache replacement,” in ISCA, 2006.

161. M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches,” in MICRO, 2006.

162. L. E. Ramos et al., “Page placement in hybrid memory systems,” in ICS, 2011.

163. S. Raoux et al., “Phase-change random access memory: A scalable technology,” IBM

JR&D, vol. 52, Jul/Sep 2008.

164. B. Schroder et al., “DRAM errors in the wild: A large-scale field study,” in SIGMETRICS,

2009.

165. N. H. Seong et al., “Tri-level-cell phase change memory: Toward an efficient and reliable

memory system,” in ISCA, 2013.

166. V. Seshadri et al., “The evicted-address filter: A unified mechanism to address both cache

pollution and thrashing,” in PACT, 2012.

167. V. Seshadri et al., “RowClone: Fast and efficient In-DRAM copy and initialization of bulk

data,” in MICRO, 2013.

168. V. Seshadri et al., “The dirty-block index,” in ISCA, 2014.

169. V. Seshadri et al., “Mitigating prefetcher-caused pollution using informed caching policies

for prefetched blocks,” TACO, 2014.

170. F. Soltis, “Inside the AS/400,” 29th Street Press, 1996.

171. N. H. Song et al., “Security refresh: prevent malicious wear-out and increase durability for

phase-change memory with dynamically randomized address mapping,” in ISCA, 2010.

172. V. Sridharan and D. Liberty, “A study of DRAM failures in the field,” in SC, 2012.

173. V. Sridharan et al., “Feng shui of supercomputer memory: Positional effects in DRAM and

SRAM faults,” in SC, 2013.

174. S. Srinath et al., “Feedback directed prefetching: Improving the performance and

bandwidth-efficiency of hardware prefetchers,” in HPCA, 2007.

175. J. Stuecheli et al., “The virtual write queue: Coordinating DRAM and last-level cache

policies,” in ISCA, 2010.

176. L. Subramanian et al., “MISE: Providing performance predictability and improving fairness

in shared main memory systems,” in HPCA, 2013.

177. L. Subramanian et al., “The blacklisting memory scheduler: Achieving high performance

and fairness at low cost,” in ICCD, 2014.

178. M. A. Suleman et al., “Accelerating critical section execution with asymmetric multi-core

architectures,” in ASPLOS, 2009.

179. M. A. Suleman et al., “Data marshaling for multi-core architectures,” in ISCA, 2010.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 53

180. M. A. Suleman et al., “Data marshaling for multi-core systems,” IEEE Micro (TOP PICKS

Issue), vol. 31, no. 1, 2011.

181. M. A. Suleman et al., “Accelerating critical section execution with asymmetric multi-core

architectures,” IEEE Micro (TOP PICKS Issue), vol. 30, no. 1, 2010.

182. L. Tang et al., “The impact of memory subsystem resource sharing on datacenter applica-

tions,” in ISCA, 2011.

183. J. Tendler et al., “POWER4 system microarchitecture,” IBM JRD, Oct. 2001.

184. M. Thottethodi et al., “Exploiting global knowledge to achieve self-tuned congestion control

for k-ary n-cube networks,” IEEE TPDS, vol. 15, no. 3, 2004.

185. R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,” IBM

JR&D, vol. 11, Jan. 1967.

186. T. Treangen and S. Salzberg, “Repetitive DNA and next-generation sequencing: compu-

tational challenges and solutions,” in Nature Reviews Genetics, 2012.

187. A. Udipi et al., “Rethinking DRAM design and organization for energy-constrained multi-

cores,” in ISCA, 2010.

188. A. Udipi et al., “Combining memory and a controller with photonics through 3D-stacking

to enable scalable and energy-efficient systems,” in ISCA, 2011.

189. V. Vasudevan et al., “Using vector interfaces to deliver millions of IOPS from a networked

key-value storage server,” in SoCC, 2012.

190. R. K. Venkatesan et al., “Retention-aware placement in DRAM (RAPID): Software meth-

ods for quasi-non-volatile DRAM,” in HPCA, 2006.

191. X. Wang and J. Martinez, “XChange: Scalable dynamic multi-resource allocation in mul-

ticore architectures,” in HPCA, 2015.

192. H.-S. P. Wong et al., “Phase change memory,” in Proceedings of the IEEE, 2010.

193. H.-S. P. Wong et al., “Metal-oxide RRAM,” in Proceedings of the IEEE, 2012.

194. M. Xie et al., “Improving system throughput and fairness simultaneously in shared memory

CMP systems via dynamic bank partitioning,” in HPCA, 2014.

195. Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-partitioning of multi-core shared

caches,” in ISCA, 2009.

196. H. Xin et al., “Accelerating read mapping with FastHASH,” in BMC Genomics, 2013.

197. H. Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to

Accelerate Alignment Verification in Read Mapping,” in Bioinformatics, 2015.

198. J. Yang et al., “Frequent value compression in data caches,” in MICRO, 2000.

199. D. Yoon et al., “Adaptive granularity memory systems: A tradeoff between storage effi-

ciency and throughput,” in ISCA, 2011.

200. D. Yoon et al., “The dynamic granularity memory system,” in ISCA, 2012.

201. H. Yoon et al., “Row buffer locality aware caching policies for hybrid memories,” in ICCD,

2012.

202. H. Yoon et al., “Data mapping and buffering in multi-level cell memory for higher perfor-

mance and energy efficiency.” CMU SAFARI Tech. Report, 2013.

Research Problems and Opportunities in Memory Systems

54 Supercomputing Frontiers and Innovations

203. H. Yoon et al., “Efficient data mapping and buffering techniques for multi-level cell phase-

change memories,” TACO, 2014.

204. J. Zhao et al., “FIRM: Fair and high-performance memory control for persistent memory

systems,” in MICRO, 2014.

205. H. Zhou and T. M. Conte, “Enhancing memory level parallelism via recovery-free value

prediction,” in ICS, 2003.

206. S. Zhuravlev et al., “Addressing shared resource contention in multicore processors via

scheduling,” in ASPLOS, 2010.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 55

