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Pipeline software that comprise tool and application chains for specific data processing have

found extensive utilization in the analysis of several data types, such as genome, in bioinformatics

research. Recent trends in genome analysis require use of pipeline software for optimum utiliza-

tion of computational resources, thereby facilitating efficient handling of large-scale biological data

accumulated on a daily basis. However, use of pipeline software in bioinformatics tends to be prob-

lematic owing to their large memory and storage capacity requirements, increasing number of job

submissions, and a wide range of software dependencies. This paper presents a massive parallel

genome/exome analysis pipeline software that addresses these difficulties. Additionally, it can be

executed on a large number of K computer nodes. The proposed pipeline incorporates workflow

management functionality that performs effectively when considering the task-dependency graph

of internal executions via extension of the dynamic task distribution framework. Performance

results pertaining to the core pipeline functionality, obtained via evaluation experiments per-

formed using an actual exome dataset, demonstrate good scalability when using over a thousand

nodes. Additionally, this study proposes several approaches to resolve performance bottlenecks of

a pipeline by considering the domain knowledge pertaining to internal pipeline executions as a

major challenge facing pipeline parallelization.

Keywords: pipeline software, software development, K computer, message passing interface,

genome analysis, exome analysis.

Introduction

The cost of analyzing the enormous amounts of life science data that accumulate on a daily

basis has become a major research bottleneck because the appearance of next-generation DNA

sequencers (NGS) has drastically improved the efficiency of sequencing. Today, pipeline software

that automates a series of analytic tasks on a computer and provides functions that utilize

computational resources effectively is indispensable for research work. In fact, data analysis using

pipeline software on parallel computers is being performed daily at various research sites [1–3].

The “K computer” [4], located at RIKEN Advanced Institute for Computational Science, is

representative of large-scale parallel computers in Japan and has a track record of winning the

9-th consecutive first place in the Graph500.org contest. Likewise, the K computer is expected

to achieve exceptional results when performing bioinformatics analysis. However, to date, results

obtained in this regard using the K computer are limited by several challenges that must be

overcome.

First, several large-scale genome analysis requires large memory and storage capacity; how-

ever, the specification of the K computer is that each computing node has a small memory

capacity. In addition, pipeline software tend to assume that a large number of jobs can be run

during internal execution. However, such an operation is not conducive for efficient functioning

of the K computer. The above-mentioned problems can be attributed to the architectural con-
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cept of the K computer aimed at realization of massive parallel processing through use of a large

number of lightweight nodes connected by a high-speed network.

Secondly, implementation of a general bioinformatics pipeline software on the K computer

requires different software that are coded in different programming languages and different li-

braries to be modified to suit the SPARC architecture of the K computer. For instance, pro-

gramming language environments, such as Java, are necessary to execute the software required

in certain pipelines, but the same may not be officially provided within the K computer system.

Therefore, the cost of developing an environment for bioinformatics analysis on the K computer

can be considered a major challenge.

Exome analysis, the focus of this study, is one of the bioinformatics analysis methods that

require a large-scale computing environment. In particular, exome analysis is a technique based

on genome sequence analysis and is designed to efficiently detect functionally important muta-

tions by analyzing only the “exon regions” in the whole human genome [5]. In exome sequencing,

because the exon sequencing cost per sample is lower than general whole genome sequencing, a

large number of samples is expected to be processed; thus, the computational resources are re-

quired to be more powerful. The acceleration of exome analysis to enable us to process hundreds

of samples urgently requires the development of an efficient analysis pipeline on a large-scale

computer system.

This motivated us to develop pipeline software that performs exome analysis on the K com-

puter and an extension of the task management framework for this research. We consider the

affinity of our task management system and job management system of the K computer to

enhance the pipeline performance.

To summarize, this study makes the following key contributions:

• We developed pipeline software that performs exome analysis on the K computer to satisfy

the demands of the vast amount of exome sequencing data.

• We developed an extension of the task management framework to enable effective execution

by considering the task dependencies, and to run on the K computer.

• We propose approaches to resolve the bottleneck of parallel performance of the pipeline

by re-arranging the internal process.

The remainder of this manuscript has been compiled as follows.

Section 1 discusses core implementations of the proposed pipeline software to be used on the

K computer. The section provides an overview of the K computer, design and implementation of

the proposed pipeline software. Additionally, performance results obtained for a core function –

i.e., mapping for reference genome – of the said software have been discussed.

Section 2 describes pipeline parallelization based on an execution profile, thereby demon-

strating means to improve pipelining performance. In this section, the authors propose several

approaches to resolve performance bottlenecks and discuss the effects of proposed approaches

through evaluation experiments.

Limitations of the pipeline and proposed approaches are presented in the Discussion section.

Lastly, the Conclusions section summarizes major learnings from this study as well as discusses

the scope for further research endeavors in this regard.
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1. Development of a Genome/Exome Pipeline by Extending

a Task Management Framework on the K computer

1.1. Overview of the K Computer

The K computer [4] is a large-scale parallel computer consisting of 88,128 nodes and 864 racks

in total. Each node is equipped with a Fujitsu general-purpose scalar processor SPARC64 VIIIfx,

in which eight processor cores, cache memory, and a memory controller are integrated into one

chip. These nodes constitute the six-dimensional mesh/torus network connected by the “Tofu”

interconnect [6] to ensure that the network achieves high throughput and high availability.

Table 1 shows the system specification of the K computer3, 4.

Table 1. System specification of K computer

# compute nodes 82,944

CPU SPARC64 VIIIfx [2.0 GHz] (8 cores)

Memory DDR3 SDRAM 16 [GB]

Interconnect Tofu interconnect [6]

Topology 6D mesh/torus

Operating System Linux (customized)

File system Lustre (Fujitsu Exabyte File System) [8, 9]

1.1.1. Two-layer file system model and staging process

Compute nodeLogin node

Global-FS Local-FS

User data

Application

User data

Application

Stage-out

Stage-in

Figure 1. Two-layer file system model on K computer

The K computer supports large-scale file access from tens of thousands of nodes by adopting

a two-layer file system model (Fig. 1). The first is a Local File System (Local-FS) that is used

as a high-speed temporary storage area dedicated to the jobs running on the compute nodes.

The second is a Global File System (Global-FS) that is used as a large-capacity shared storage

area widely accessed from login node and other related systems. Both of them use the Fujitsu

Exabyte File System [9] based on Lustre [8].

Users can access data stored in the large-capacity Global-FS from the login node, whereas

when executing a job, the files necessary for running jobs must be transferred to the Local-

FS. Specifically, by describing options such as the files path to the script at job submission,

the following “staging” process will be started: input target files are copied from Global-FS to

3The K computer was operated by RIKEN in Japan between June 2012 and September 2019.
4“Fugaku” – a successor system of the K computer equipped with ARM-based CPU (A64FX) – is currently under

development, and its operation is scheduled to begin in 2021 [7].
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Local-FS before the job execution (stage-in), and after the job completion, the output target

files are copied from Local-FS to Global-FS (stage-out).

All users must keep the staging process in mind when submitting a job to the K computer;

consequently, the pipeline we developed on this research is also designed to be compatible with

the two-layer file system model and to minimize data transfers in the staging process.

1.2. Genomon-exome: an Exome Analysis Pipeline Software

We selected “Genomon-exome” as a target for the proposed pipeline software developed

for the K computer. Genomon-exome is exome analysis pipeline software designed to run in a

general PC cluster environment. It provides various functions composed by using well-known

open source software (OSS) in the bioinformatics field, and its entire source code is available on

the web [3]. It also supports parallel execution of its pipeline internal processes by submitting

jobs into the PC cluster to utilize the computational resources comprehensively. Genomon-exome

has contributed to the exome sequencing data analysis in the biological field, and was extensively

used to process and analyze data in various studies [1, 2].

1.2.1. General genome/exome analysis pipeline software

SupercomputerDNA sequencer DNA sequence

Application A

Application B

Application C

Pipeline software

AGGTCGTTACGTACGCTAC

GACCTACATCAGTACATAG

GCATGACAAAGCTAGGTGT

Figure 2. Computational experiments in general genome analysis workflow

The computational processes of exome analysis and general genome analysis are almost the

same. Pipeline software is used to analyze the DNA sequencing data generated by the DNA

sequencers or obtained from public databases to achieve its various purposes. The software is

designed to perform in computing environments of various scales ranging from a small-scale PC

cluster to a large-scale supercomputer (Fig. 2).

In the case of exome analysis, DNA fragments in a sample corresponding to “exonic regions”

are specially hybridized and selected at the previous biological experiments, such that exome

data performs effectively in specific analysis processes with metadata of exonic regions and can

help to reduce the computational cost.

The following are general functions of a genome/exome analysis pipeline software.

Mapping (Alignment) Align the base sequences of several short DNA fragments (so-called

“reads”) with the positions of a similar sequence in a reference genome.

Mutation call Detect mutations by comparing the differences among the aligned sequences

from several types of samples.

Annotation Annotate each of the mutations to each of the known gene databases to examine

the relationship between mutations and genes in samples.
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1.2.2. Overview of mapping in Genomon-exome

・・・
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・・・

・・・

・・・
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checkLineSizeAlignmentBam.sh

my_mergeAlignmentBam.sh

bam2summary.sh

bwa_aln.sh
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sam_join.sh
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my_mergeAlignmentBam.sh

bam2summary.sh
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my_mergeAlignmentBam.sh

bam2summary.sh

Figure 3. Task-dependency graph in mapping

Here, we present an overview of the mapping function of the pipeline in Genomon-exome

(Fig. 3). Each task is defined as a shell-script that executes necessary binaries (or commands) to

process input data for each purpose. All tasks in the mapping function are executed in parallel,

to the extent possible, by submitting jobs to the scheduler.

i. split input Split input FASTQ format files based on parameters (split.sh), and submit

jobs in parallel (map bwa.sh).

ii. alignment Do alignment of all reads in files to reference genome using the Burrows-Wheeler

Aligner (BWA) [10] (bwa aln.sh), output the Sequence Alignment/Map (SAM) for-

mat [11] files as mapping results using the pair-end sequence (bwa sampe.sh).

iii. post-processing Merge separated SAM files into one file by each sample (sam join.sh).

Convert into a compressed format (BAM), sort the reads based on aligned position, remove

duplicated reads, and create an index of reads (sam2orgbam.sh) using SAMtools [12].

iv. output Check the consistency of output results (checkLineSizeAlignmentBam.sh).

Merge and create index again if other BAM files from the same sample also

exist (my mergeAlignmentBam.sh). Output a statistical summary of the map-

ping (bam2summary.sh).
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1.2.3. Other functions within Genomon-exome

The original Genomon-exome includes other functions such as mutation calling and gene

annotation. However, these functions do not necessarily perform efficiently in large-scale parallel

processing because their computational cost is much smaller than that of the mapping function.

Furthermore, on the K computer, the supported programming language environments in the

computing nodes do not meet the full requirements of the pipeline (Tab. 2); thus, it was difficult

to develop full functions of the pipeline.

Therefore, we assumed that the remaining functions in the pipeline are executed on the

“pre/post-processing node” – a general-purpose computing environment accessible from the

login node with support for ’R’ and ’Java’ languages. We focus on the mapping function and

its large-scale parallel performance on the computing node of the K computer in the following

sections. Moreover, we first focus on the alignment task on the mapping function (i. split and

ii. alignment in Fig. 3), because that task tends to be a dominant part of the entire mapping

function.

Table 2. Software requirements of original Genomon-exome and language support

in K computer

Software Purpose Language The K computer

BWA [10] Alignment for reference sequence C X
GATK [13] Realignment for mapping result Java

SAMtools [12] Utilities for SAM/BAM format C X
ANNOVAR [14] Annotation of result Perl X
Picard [15] Statistical output Java

cutadapt [16] Removing adapter sequences Python X
maq [17] Conversion for Solexa/Sanger format C/C++ X
bedtools [18] Utilities for BED format C/C++ X
bioconductor [19] Copy Number Variation (CNV) analysis R

1.3. Design and Implementation of Proposed Pipeline on K Computer

System

Two major difficulties need to be solved to develop a pipeline on the K computer: those

related to the pipeline task management and those related to the job management system of the

K computer. The first problem is the increasing staging time due to an increase in the number of

input jobs. The second problem is the increasing waiting time by unnecessary synchronization.

Problem 1: Increasing the staging time in job queuing

In the original Genomon-exome, one job was responsible for managing the entire workflow

and progress of the other jobs (map bwa.sh in Fig. 3). Once submitted by a user, a “management

job” submits each pipeline task as a child job to the scheduler. It additionally waits for the

synchronization of jobs of the same task, submits the next task as a job, and repeats it until the

workflow reaches completion.
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However, every job submission on the K computer incurs file transfer (staging) cost because

of the differences of the file systems between Local-FS and Global-FS. Thus, an increase in the

staging time of each job in a pipeline was a matter of pipeline development.

Here we present an example of the number of tasks used in the original Genomon-exome

to show the maximum concurrent tasks in the mapping function (Tab. 3). In Tab. 3, T is the

number of samples, ti is the i-th sample, Sti is the number of split files of the i-th sample.

During the mapping function, the alignment task (bwa aln.sh) can be performed effectively

in parallel by increasing the number of split files (Sti) because it directly increases the number

of running tasks simultaneously. However, increasing the number of job submissions also incurs

increased waiting time for resource allocation and the staging process, thus requiring the problem

to be resolved by appropriate task management on the K computer.

Table 3. Example of number of tasks in mapping function for pair-end

sequence

Task name Description Concurrent tasks

map bwa.sh Management job 1

split.sh Split input 2T

bwa aln.sh Alignment 2
∑

T Sti

bwa sampe.sh
∑

T Sti

sam join.sh Post-processing T

sam2orgbam.sh T

checkLineSizeAlignmentBam.sh Output results T

my mergeAlignmentBam.sh and statistics T

bam2summary.sh T

Problem 2: Increasing the waiting time by unnecessary synchronization

In the original pipeline, the “management job”, which controls the workflow, always syn-

chronized all jobs within a given task before proceeding to the next task. This required all tasks

to wait for completion of the task with the longest execution time, albeit target data were in-

dependent of those involved the other tasks. This suboptimum task balance led to performance

degradation. Therefore, it is important to resolve inter-task dependencies as well as determine

the necessity for task synchronization.

1.3.1. Introducing master–worker framework for task management

We introduce the MPIDP framework [20], a dynamic task-processing framework developed

by the authors, as an alternative to the “management job” role in the original pipeline. MPIDP

is based on the master-worker model using the MPI library, which dynamically distributes the

tasks in the given list with the point-to-point MPI communications. While it is processing tasks,

the master sends a new task to an available free worker, and workers execute the assigned task

or request the next task, until all tasks have been completed. The data exchanges between

processes are performed via the file system.

Introducing MPIDP enables one job to manage the entire task workflow and reduce the

number of jobs to resolve the problem of staging time related to the increasing number of jobs.
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Since then, the MapReduce framework [21], which performs well by utilizing the affinity

of file system access on the K computer, became available. However, it was not available at

the time of the beginning of this research, and its implementation design was developed with

reference to the source code of MPIDP. Therefore, in this research, we adopted MPIDP as a

task-processing framework for the pipeline on the K computer.

1.3.2. Developing extension to resolve task dependencies

We also developed a new extension of MPIDP to solve another problem of the original

pipeline related to unnecessary synchronization. The original MPIDP does not have the function

to resolve task dependencies because it was developed for the embarrassingly parallel data-

processing model. However, because each task in the pipeline depends on each target data that

are not independent, the original MPIDP cannot be applied straightforwardly.

To resolve this issue, we developed an extension that enables tasks to be executed by con-

sidering data dependencies. The extension provides a function that allows a task to wait only for

the task it directly depends on, and awards them executable status when the dependent tasks

are completed.

The extension is implemented by the simple wait queuing program to resolve the directed

acyclic graph (DAG) of the task-dependency graph. Users can simply use the extension by adding

the id field of dependent tasks to the line in the task list; consequently, the next task is executed

after waiting for the completion of dependent tasks without unnecessary synchronization.

1.3.3. Building a pipeline with task management on the K computer

Login node

Global-FS

Compute node

Local-FS

Task list

Application

Data

Application

Data

Task list

Stage-out

Stage-in
i. submit ii. resource allocation and stage-in

iv. output and stage-out

iii. task processing

Job script
TITLE=mapping

0           sh split.sh xxx.fastq …

1           sh split.sh xxx.fastq …

…

5   0      sh bwa_aln.sh xxx.fastq

6   1      sh bwa_aln.sh xxx.fastq

7   5,7   sh bwa_sampe.sh …

Master

Figure 4. Diagram of exome pipeline on K computer using extended MPIDP

Figure 4 diagrammatically presents the exome pipeline that uses extended MPIDP on the

K computer. The applications (e.g., BWA and SAMtools) and data (e.g., FASTQ files) required

in the pipeline are stored in the data partition of the Global-FS on the login node.

i. Submitting a job to the system The user submits a job script that includes computing

resources, staging information, a task list for the MPIDP framework, etc. to the job sched-

uler. That script is automatically generated after the user inputs the data and parameters.
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ii. Resource allocation and stage-in The job scheduler allocates computing resources, and

starts data transfer of the target files from the Global-FS to the Local-FS.

iii. Task processing using extended MPIDP The master process of MPIDP assigns the

tasks to workers, and workers start to process the tasks. Tasks are dynamically distributed

by MPI communications and performed by considering the task dependencies.

iv. Output results and stage-out After the job is completed, the results are transferred from

the Local-FS to the Global-FS.

1.4. Performance Evaluation

We present a performance experiment to evaluate the exome pipeline on the K computer.

The experiment shows the execution time and the scalability of the alignment task of the map-

ping function using our pipeline.

1.4.1. Experimental setup

The input data we used were data from a real exome project obtained from ERP001575 [22],

the lung cancer exome dataset (Tab. 4). We selected samples of normal data and samples con-

taining tumors, such that the number of samples in all experiments is two (T = 2).

System and software specifications used in the experiments are provided in Tab. 5. The

measured data were from elapsed time provided by the system stats, and internal task execu-

tion of MPIDP by the gettimeofday function. For configuration of the internal execution, the

number of threads was set as 8 in the alignment task using BWA [10], and the others were run

by using a single thread.

Table 4. Description of lung-cancer data (exome)

Run ERR160121 ERR166339

Type normal tumor

Length 100 [bp] 100 [bp]

Paired yes yes

Platform Illumina HiSeq 2000 Illumina HiSeq 2000

Total size 13.324 [GB]×2 (pair-end) 23.726 [GB]×2 (pair-end)

1.4.2. Experiment 1: alignment performance of mapping function

The execution time of the alignment task in the mapping function (map bwa.sh) is shown

in Fig. 5a, the scalability in strong scaling is shown in Fig. 5b.

First, it was confirmed that the output of the proposed pipeline was equivalent to the result

obtained using the original Genomon-exome environment on a regular PC cluster. This, in turn,

implies successful development of a genome/exome analysis pipeline software on the K computer

system.

In view of the acceleration of the alignment task in the mapping function, our pipeline

provided excellent scalability until the number of nodes was increased to 64 nodes, and also
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Table 5. System and software settings pertaining to the K computer

(Dec. 2014)

# compute nodes 82,944

CPU SPARC64 VIIIfx [2.0 GHz] (8 cores)

Memory DDR3 SDRAM 16 [GB]

Operating System Linux ver. 2.6.32

C/C++ Fujitsu C Compiler ver. 1.2.0

Python Python ver. 2.6.2

Java N/A

Perl Perl ver. 5.10

MPI FUJITSU MPI Library (OpenMPI ver. 1.4.3)
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Figure 5. Alignment performance of mapping function (map bwa.sh)

performed well but that gradually slowed down. Finally, its speed-up was ×16.05 at 1024 nodes

(based on 16 nodes) on the K computer.

On the other hand, because of the issue of total memory capacity of the compute node, our

pipeline could not run with less than 16 nodes. It is because the BWA, which is software mainly

used in the alignment task, consumes a large amount of memory, thereby causing an internal

error in the program.

2. Further Challenges Facing Whole-Pipeline Parallelization

on K Computer

In this study, we successfully developed an exome pipeline on the K computer. The said

pipeline can dynamically distribute tasks within a given job whilst efficiently eliminating un-

necessary synchronizations (Sec. 1.3). In this section, to improve the performance of the entire

pipeline, we extend the proposed pipeline parallelization to latter parts of the mapping function

with the objective of improving performance based on an execution profile.

To this end, this section first demonstrates the execution profile of the proposed pipeline

followed by revelation of performance bottlenecks (Sec. 2.1). Subsequently, the handling of each

task has been described (Sec. 2.2). Next, the authors propose several approaches to resolve

identified pipeline bottlenecks (Sec. 2.3). Lastly, effects of proposed approaches on pipeline

performance have been examined (Sec. 2.4).
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2.1. Performance Analysis of the Mapping Function

To clearly demonstrate the performance bottleneck of the pipeline, we obtained an execution

profile of the pipeline for real exome data and estimated the total amount of execution time for

each task. Table 6 lists the total execution time of each task of the mapping function. The result

in each line is the summation of the execution time of 16 computing nodes. The table data

include an amount to correct the measured overhead to compensate for the duplicated file I/O

overhead.

Table 6. Execution time of each task and its ratio

Task name Description Elapsed time [sec] ratio

map bwa.sh Management Job - -

split.sh Split input 683 0.005

bwa aln.sh Alignment 59,876 0.448

bwa sampe.sh 29,555 0.221

sam join.sh Post-processing 1,920 0.014

sam2orgbam.sh 39,419 0.295

checkLineSizeAlignmentBam.sh Output results 3,081 0.023

my mergeAlignmentBam.sh and statistics 125 0.001

bam2summary.sh - -

TOTAL 127,094 1.00

The results show, as we expected, the most dominant task of the mapping function

was bwa aln.sh (44.8%) as the main task of alignment. However, the second most time-

consuming task was sam2orgbam.sh (29.5%) which is the post-processing of alignment. The

task sam2orgbam.sh, called to perform post-process alignment, shared approximately 30% of all

execution time but the degree of concurrency is not as high as that of other tasks. This suggests

that only a number of samples are running simultaneously, i.e., two (T = 2) in this case.

Consequently, attempts to improve the performance and increase the number of nodes would

be affected by this parallel bottleneck, which would detrimentally affect the parallel performance

of the pipeline. Thus, we propose several approaches to solve this problem and improve the

parallel performance of the pipeline.

2.2. Overview of the Alignment-post-process

bwa_sampe.sh

bwa_sampe.sh

bwa_sampe.sh

sam_join.sh

Merge

sam2orgbam.sh

type1_aaa.sam

type1_aab.sam

type1_xxx.sam

type1/ga.sam

type1/ga.bam

type1/ga.bai

Sort

Convert

Remove Dup.

Index

i. generate SAM files ii. merge each sample iii. create BAM and index

Figure 6. Diagram of the alignment-post-process
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The alignment-post-process is composed of several tasks such as that of merging the align-

ment result files for each sample, and converting them into a compressed format (Fig. 6).

First, split SAM format [11] files are generated as the alignment result using “pair-end”

information. Next, all SAM files are merged into a single SAM file for each sample. After that,

each merged SAM file is converted into compressed BAM format [11], sorted based on the result

of the alignment position, the duplicated reads in a file removed, and finally a BAM index

created.

The Sequence Alignment/Map (SAM) format stores the result of mapping, including align-

ment information of reads described in human-readable text. The BAM (binary SAM) format

is a compressed SAM file intended to reduce the file size, and is compressed by BGZF (Blocked

GNU Zip Format) of GZIP. These two formats are compatible and they can be converted to

each other by various tools without information loss.

2.3. Proposed Approaches to Improve the Performance

of the Alignment-post-process

Timeline

Parallel Proc.

Approach A Convert Sort Remove Dup. IndexMerge

Approach B Convert Merge Sort IndexRemove Dup.

Baseline SortConvert Remove Dup. IndexMerge

Approach C Convert Remove Dup.SortSplit SAM IndexBAM concat

Serial Proc.

Figure 7. Overview of the proposed approaches

We propose 3+1 approaches to improve the parallel performance of the alignment-post-

process. The first three approaches are mutually exclusive, but the last approach can be used

with other approaches. No approach results in information loss, and results obtained were found

to be compatible to those obtained using the baseline approach. Figure 7 shows an overview of

the first three approaches.

Approach A) Rearrangement of processing order

In the alignment-post-process, the conversion of separated SAM format to BAM format can

be executed independently from each other, and apart from this, the separated BAM files can

be merged into one BAM file if they are sorted. Accordingly, it is possible to execute both the

conversion and sorting processes in parallel prior to merging files. Subsequently, all sorted BAM

files can be merged into a single BAM file (Approach A in Fig. 7).

By contrast, the “remove duplicates” process cannot be performed properly in parallel by

using this approach. This is because the possibility of the existence of “duplicated reads” over

other files would not allow the process to exclude the duplicates between files.

Approach B) Introduction of parallel merge sort

Next, we propose the introduction of a parallel sorting algorithm for the sorting and merging

process of approach A. We can obtain one sorted and merged BAM file by O(log2N) steps by
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using two-way merge sort (Approach B in Fig. 7), where N is the number of separated files. If

the sorting process dominates the execution time of alignment-post-process, it is expected to be

accelerated using parallel merge sort.

Approach C) Processing individual chromosomes in parallel

Here we propose a method to parallelize the “remove duplicate” process. Once a read oper-

ation is aligned to a chromosome it cannot be aligned to another chromosome; thus, by dividing

the input SAM files among each of the chromosomes, the process of removing the duplicates

from each file can be executed independently from each other.

First, the script parses the read operation of the aligned chromosome and splits it into tiny

SAM files. Second, the script gathers and merges these tiny SAM files with each of the SAM

files aligned to the same chromosome. Then, the processes of converting, sorting, and removing

duplicates can be performed in parallel (Approach C in Fig. 7).

Moreover, if all regions are sorted by each chromosome, it is possible to simplify the con-

catenation in the last merge process without internal sorting.

Additional) Tuning of BAM compression level

The file size of BAM format can be tuned by changing its “compression level” — similarly

to gzip [23] compression level setting — and a trade-off exists between the file size and compres-

sion/decompression time. Note that, if the compression level is configured as high, the execution

time of processes using BAM format increases because its internal program includes converting

processes from BAM to SAM, and inverse.

Therefore, we configured the compression level to zero, which implies no compression of the

internal output of the pipeline, to optimize performance for all proposed approaches. Finally,

it set to the default value at the terminal output, to reduce the size of output file. There are

still internal conversion processes of SAM/BAM format but the performance is expected to be

improved.

2.4. Performance Evaluation

We present a performance experiment to evaluate the effectiveness of our proposals from the

viewpoint of resolving the bottleneck of parallel performance. We apply each proposed approach

to the pipeline and measure the execution time of the entire mapping process for each approach.

2.4.1. Experimental setup

The computational environment that was used is the same as in the previous experiment.

2.4.2. Experiment 2: performance of the entire mapping function by applying the

proposed approaches

The execution time of the entire mapping function when applying the proposed approaches

(Sec. 2.3) is shown in Fig. 8. The label baseline (vanilla) shows the naive implementation

of the pipeline we developed in the previous section (Sec. 1.3). The label baseline (tuned)
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Figure 8. Execution time of the entire mapping function by applying the proposed approaches

shows the result of tuning the BAM compression level. The other labels of approach A, B, C

show the result of applying each of the proposed approaches to the baseline (tuned).

First, we confirmed that the result of tuning the BAM compression level is effective in all

cases with an acceptable trade-off. Importantly, it reduces the bottleneck of internal format

conversions in the alignment-post-process; therefore, we assumed that the tuning would also be

effective in the other approaches.

Our experiments confirmed that approach C, with parallelizing for each chromosome, deliv-

ers the most effective performance improvement of all. approach C, in which almost all processes

of the alignment-post-process are performed in parallel, yielded good results, and simple BAM

concatenation also performed well because it reduces the time for internal BAM conversion.

The other approaches also outperformed the baseline (tuned). That is, approach A, B also

showed good results but they were not comparable with the result obtained with approach C.

However, no results were obtained in cases of executions involving a small number of nodes

(N = 16). This was attributed to occurrence of the segmentation-fault error during the alignment

process when generating the result of alignment from using “pair-end” information. Investigation

of what led to occurrence of the said error yielded no concrete results.

3. Discussion

In the last experiment, we confirmed our proposed approaches performed effective to reduce

the execution time; however, even when we used the most effective of all the proposed approaches,

the scalability was not as good as we expected.

Limitation of the parallelization of chromosomes

First, the problem directly related to the proposed method (approach C) is suggested to be

the limitation by the number of types of human chromosomes. The number of types of human

chromosomes is 22 + 2 at maximum; hence, the maximum parallelism that can be achieved

is limited by this number. Consequently, the use of more than T × 24 nodes does not result

in optimal performance during the alignment-post-process in approach C. To overcome the
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problem, we consider splitting the SAM files into a larger number of small regions, rather than

depending on the number of chromosomes to improve the performance.

Task load balancing between worker nodes

Additionally, to confirm the stats of load balancing, we calculated the average idle time in

experiment 2 (Fig. 9). The average idle time increases with the number of nodes and approxi-

mately 56.5% of the execution time is also included in the idle time even for the most satisfactory

case at 32 nodes on approach C. Therefore, our proposed approaches show certain improvements

in parallel performance; however, they remain problematic with respect to concurrency.
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Figure 9. Average idle time ratio of each node during the mapping function

4. Related Work

Container-based virtualization that generates less performance overhead, such as the con-

tainer systems Docker, Singularity [24], is spreading into the cloud and HPC environments.

Benchmarks and system reports of container technology have been increasing in bioinformat-

ics, especially in pipeline deployment, because the reproducibility and availability of a pipeline

would be improved by container technology as application-level virtualization. Although con-

tainer compatible pipelines (e.g., Nextflow [25]) are spreading in the bioinformatics field, the

K computer does not provide such a container environment.

NGS analyzer [26] is a whole-genome analysis pipeline developed at RIKEN that can be

implemented in HPC environments such as the K computer. We used its implementations as a

reference for our pipeline development but the purpose of the pipeline is different from ours.

Conclusions

We developed pipeline software for the massively parallel environment of the K computer

and confirmed that the parallel performance in the alignment task of the mapping function shows

good scalability when using the real exome dataset. Our pipeline was designed to distribute its

internal tasks dynamically in parallel using MPI communications of the MPIDP framework;

thereby, we succeeded in reducing the number of jobs in the pipeline, apart from ensuring com-

patibility with the system environment. We also developed an extension of MPIDP to minimize

the task synchronizations by providing a function for considering the task dependencies.
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Furthermore, we attempted to extend the pipeline parallelization to the alignment post-

process, for which we proposed 3+1 approaches to resolve the performance bottleneck by focusing

on the number of concurrent tasks in alignment-post-process. The experimental results showed

that our approaches are able to effectively improve the performance of the pipeline, which

achieved a maximum speed-up of ×6.6 on 256 nodes, compared with the baseline.

The proposed pipeline has been tailored to the system architecture of the K computer.

However, the MPIDP framework extended in this study is based on the general MPI framework,

and therefore, it is compatible with regular pipelines and PC clusters. In addition, the proposed

pipeline would be expected to contribute to address the vast cost of genome analysis, and to the

personalized drug development based on genomic information.

Code Availability

The source code pertaining to the extended MPIDP framework is available in the author’s

GitHub repository5. The source code of the original Genomon-exome pipeline software [3] has

been distributed under the Genomon License6.
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