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On the path to Exascale, the goal of High Performance Computing (HPC) to achieve maxi-

mum performance becomes the goal of achieving maximum performance under strict power con-

straint. Novel approaches to hardware and software co-design of modern HPC systems have to be

developed to address such challenges.

In this paper, we study prediction of power consumption of HPC systems using metrics

obtained from hardware performance counters. We argue that this methodology is portable across

different micro-architecture implementations and compare results obtained on IntelR© 64, IBMR©

POWER
TM

and Cavium ThunderXR© ARMv8 microarchitectures. We discuss optimal number and

type of hardware performance counters required to accurately predict power consumption.

We compare accuracy of power predictions provided by models based on Linear Regression

(LR) and Neural Networks (NN). We find that the NN-based model provides better accuracy of

predictions than the LR model. We also find, that presently it is not yet possible to predict power

consumption on a given microarchitecture using data obtained on a different microarchitecture.

Results of our work can be used as a starting point for developing unified, cross-architectural

models for predicting power consumption.
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Introduction

Upcoming High Performance Computing (HPC) systems are on the critical path towards

delivering the highest level of performance for large scale applications. If contemporary tech-

nologies were used to build even more powerful HPC systems, the power consumption required

by those systems would be unsustainable, as it would require hundreds of megawatts of power.

Thus, current HPC systems must be built considering energy efficiency as the first and fore-

most design goal. Currently, the most power efficient HPC system on the Green500 [26] list

is Shoubu System B located at ACCC, RIKEN with 17GFlops/Watt. In order to achieve a

sustainable power draw, future HPC systems will have to feature power efficiency of around

50GFlops/Watt. Such power efficiency levels require novel software/hardware co–design, with

software guiding static and dynamic power management.

Successful development of such software relies on availability of tools for measuring power

consumption and temperature. Temperature and power sensors have been introduced to pro-

vide these type of measurements. Unfortunately, as a result of the fabrication process used to

build microprocessors, measurements of changes in power and temperature happen significantly

later then the actual event (thermal inertia). An alternative to using power and temperature

sensors would be to directly measure processor events that are causing power and temperature

changes thus eliminating time lag limitation. The best proxy for measuring processor events is

the hardware performance counters, because they offer a reliable interface to detect power and

temperature variations within a real system. Considering a very large number of hardware per-

formance counters typically available on modern systems, the task of selecting counters that are

most representative of the full system power is becoming a challenge. Moreover, complexity of
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this problem significantly increases when different types of micro–architecture implementations

are considered. The matter is further complicated by the fact that each architecture has a limited

number of registers that can be simultaneously recorded without resorting to multiplexing and

therefore reducing the accuracy. For example, IBM POWER8 architecture can simultaneously

track at most six different performance counters, while the latest Intel 64 architecture can track

up to eight.

In this paper, we extend recent works [2, 13] on estimation of power consumption of

HPC systems with metrics obtained using hardware performance counters on three different

micro–architecture implementations: Intel 64 Broadwell, IBM POWER8 and Cavium Thun-

derX ARMv8 architecture and argue that the methodology is portable across different micro–

architecture implementations. We study advantages and disadvantages of a model presented

in [2] and [13] in dealing with emerging HPC workloads. We improve accuracy of power con-

sumption predictions by adoptong a model based on Neural Networks (NN) and discuss the

optimal number and the type of hardware performance counters required to accurately predict

power consumption within few percents of the actual power consumption. We believe that our

results can guide system designers in implementing hardware counters which measure similar

events between different types of architectures, which in turn will allow developing more general

models of power consumption.

The rest of the paper is structured as follows. Section 1 describes the use of hardware

performance counters for power consumption estimations. Section 2 explains advantages and

disadvantages of the power estimation model from [2, 13] and describes methodology that was

used to collect data on three different HPC systems. Section 3 describes NN based approach

to developing a more accurate prediction model and shows results that we have obtained using

the new model to estimate power on emerging HPC workloads. Finally, the section entitled

“Conclusions and Future Work” presents conclusions and future directions of our work.

1. Related Work

The use of hardware performance counters to estimate power consumption has been around

for some time [10]. Such approach is appealing, because it does not require information about

power consumption of individual functional units, but its accuracy relies on selecting the most

suitable hardware performance counters and on having a very representative set of applications,

which can fully characterise the target platform in order to build a reliable expression for power

estimation. Previous studies [18] have shown that it is sufficient to use only instructions per

cycle (IPC) to characterise behaviour of an operating system. In this case, the constructed

power consumption model is a static power model. In [4], authors have proposed a dynamic

power model, where the framework used to construct it contains a set of heterogeneous power

models. In all these examples, the power model has been constructed only for a micro–processor

and memories, but not for events related to a chipset, I/O and disk. For majority of workloads,

that is acceptable in terms of accuracy as microprocessors and memories consume most of the

power, and the rest of the system makes up between 10% and 20% of total power (dependant

on the type of the workload). The work presented in [7] shows how to assess the total power

of a system using hardware performance counters. The authors use the trickle–down approach

where values of power inducing hardware performance counters are propagated within different

subsystems in order to simulate the total power. The model they have built was accurate within

9%.

M. Puzović, E.K. Lee, V.V. Elisseev

2018, Vol. 5, No. 4 25



The work presented in [23] considers two processor configurations at the opposite ends of a

performance spectrum: a low power processor and a high performance processor. The authors

have found that there exists a subset of hardware performance counters, which allows evaluating

dynamic power consumption for each architecture with an average error of 5%.

The study presented in [2] demonstrates that it is possible to estimate power consumption

on HPC architectures for workloads with very high CPU utilisation ( all cores are utilised at

more than 90% ) with an average error within 5%.

Machine learning–based modelling has been gaining popularity for optimising power and

energy consumption. It has been used for power and energy modelling on HPC kernels with

different code variants [27] and for predicting a user’s demands from the usage history for

managing idle servers [12]. Genetic algorithm has been used to predict power using a wide range

of hardware activity counters [17]. Neural Network has been used to minimise the cooling energy

consumption [1] of a server. Borghesi et al. [8] have proposed a machine learning approach, which

relies on resource requests from a user and an application to estimate power consumption of HPC

workloads. Their model was able to handle cases when CPUs were not fully utilised.

However, all previous models were dealing with a particular micro architecture. In this

paper, we present in–depth study on power consumption evaluation using hardware performance

counters within three different micro–architecture implementations: Intel 64 Broadwell, IBM

POWER8 and Cavium ThunderX ARMv8.

2. Motivation

2.1. Linear Regression Model

As the starting point for predicting power consumption, we used the model introduced

in [2]. The model’s equation for power consumption of a given application as a function of CPU

frequency f is the following:

P(f) = A(f)× P(f0) +B(f)× TPI(f0) + C(f). (1)

In equation (1), power consumption P of an application running with CPU frequency f is

estimated by measurements performed at reference frequency f0. In order to use equation (1), we

need to measure, power and transactions per instruction (TPI) for each application at frequency

f0. Transactions per instruction are defined as a ratio of the number of cache lines written to

and read from memory (C) to a number of instructions executed (I) :

TPI(f) =
C(f)

I(f)
.

Coefficients A(f), B(f) and C(f) are system-specific. They are used for characterising

power on a given HPC system at CPU frequency f . It is important to note that for every

new microarchitecture implementation, it is always necessary to obtain new A(f), B(f) and

C(f) coefficients as they are not transferable.

Equation (1) assumes that we have a way to measure power consumed by an application at

a specific frequency. This is not always possible as described in the Section . Furthermore, the

majority of power sensors expose power lag and distortion where power consumption lags behind

the actual benchmark activity and the shape of power consumption does not actually match the

benchmark activity [9]. Therefore, we need to modify equation (1) to use measurements obtained
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from hardware performance counters. The new equation is:

P(f) = A(f)× GIPS(f0) +B(f)× GBS(f0) + C(f). (2)

In equation (2), GIPS is the instruction rate, which is defined as a number of giga instruc-

tions executed per second, and GBS is the memory bandwidth, which is defined as a number of

gigabytes written to and read from the memory per second. With such metrics, coefficients A,

B and C at frequency f have the following meaning:

• A is the power consumed by all executed instructions.

• B is the power consumed by data transfers.

• C is the power consumed statically.

Table 1. Intel Xeon E5 v4, IBM Power System S822LC and Cavium ThunderX characteristics

Architecture POWER8 Intel x86-64 ARMv8 64bit
Processor IBM Power System S822LC Intel Xeon E5-2698 v4 Cavium ThunderX

Core Frequency 3.5 GHz 2.3 GHz 2.0 GHz
# of cores 10 16 48
# of threads 80 32 48

Execution unit Type out-of-order out-of-order in-order
# of issue/commit 10 / 8 8 / 4 2 / 2

L1D Cache Policy NUCA Write-allocate Write-through
Type Private Private Private
Size 64 KB/core 32 KB 32KB
Associativity 8-way 8-way 32-way

L1I Cache Size 32KB/core 32KB 78 KB
Associativity 8-way 8-way 39-way

L2 Cache Policy NUCA Write-back Write-back
Type Private Private Shared
Size 512KB/core 256KB 16MB
Associativity 8-way 8-way 16-way

L3 Cache Policy NUCA Write-back N/A
Size 8MB/core 40MB N/A
Type Shared Shared N/A

SMP Interconnect Bus Type Integrated SMP interconnect QPI CCPI
Bus speed 9.6 GB/s per channel 9.6 GB/s 10.3 GHz

Memory Type DDR4 1600 DDR4 2133 DDR4 2133
# of channels 8 4 4
Access speed 1600 MHz 2133 MHz 2100 MHz

2.2. Methodology

In order to estimate power as given in equation (2), we need to read hardware performance

counters for the total number of instructions that have been executed (or retired) and the total

number of bytes that have been read and written to a memory controller.

Tab. 1 shows relevant characteristics of three different microarchitecture implementations

that we are using throughout the paper. Tab. 2 shows hardware performance counters that were

used to measure events that are required to calculate GIPS and GBS for equation (2) for the

model described in Section 2.1. We used architecture-independent libpfm library [14] to read

performance counters for events listed in Tab. 2. This approach allowed us to run our profiled

benchmarks unmodified on both architectures.

To find coefficients A, B and C, we ran a set of compute kernels as in [2] that provide a broad

spectrum of GIPS and GBS characteristics. We used NAS Parallel Benchmarks (NPB) [3] and

STREAM [19], which have been designed to test the performance of HPC systems. NPB suite

is a mix of workloads that has been derived from computational fluid dynamics, unstructured
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Figure 1. Correlation between the total node power and the power consumed by cores and

memories

adaptive mesh, parallel I/O, multi-zone applications and computational grids, whilst STREAM

is a simple synthetic benchmark that is used to measure sustainable memory bandwidth and

corresponding computation rate for straightforward compute kernels. We used the OpenMPI [24]

version of benchmarks with different classes/problem sizes in order to cover a wider range of

workloads. As for the NPB suite convention, benchmark class is appended as a suffix to the

benchmark’s name; for example, ft.C stands for discrete 3D fast Fourier Transform, class C..

Firstly, we studied which part of an HPC node contributes the most to power consumption.

For brevity, results presented in this section were obtained on Intel Xeon E5 v4 microarchi-

Table 2. Hardware performance counters used on Intel Xeon E5 v4, IBM POWER8 and Cav-

ium ThunderX microarchitecture implementations to calculate GIPS and GBS provided in

equation (2)

Microarchitecture Memory Instructions

Intel Xeon E5 v4 UNC CBO CCACHE LOOKUP.I

UNC CBO CCACHE LOOKUP.ANY REQ EVEN INSTR RETIRED

UNC ARB TRK REQUEST.EVICTIONS

IBM POWER8 PM MEM READ

PM MEM PREF PM RUN INST CMPL

MEM RWITM

Cavium ThunderX ARM L2D CACHE REFILL LD

L2D CACHE REFILL ST CPU CYCLES

L2D CACHE WB VICTIM

L2D CACHE WB CLEAN
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Figure 2. Accuracy of power consumption estimation of NPB and STREAM benchmarks using

equation (2) on IBM POWER8

tecture, but we has the same observations on IBM POWER8 micro-architecture. In order to

measure power consumption on IBM POWER8 (S822LC model) server, we used an On-Chip

Controller (OCC) that collects temperature and power data from various sensors. This data

is available either from a Baseboard Management Controller(BMC) via IPMI protocol or from

the system memory via kernel module [5]. We used a power interface board (PIB) to get to-

tal power consumption on an Intel-based server. The PIB has a hot-swap controller (HSC), TI

LM25062 [25] that measures and reports power. It works by having a shunt resistor and an I-

sense/V-sense circuit. Thus, it is possible to position HSC with the sense circuit between the 12V

DC power connector and the on-board voltage regulators to monitor the total power consumed

by the attached HPC node. In addition to total power of the HPC node, we also measured power

consumed only by processor and the memory. This was measured by reading information from

model-specific registers (MSR) that are used for the Running Average Power Limit (RAPL)

future. If there is high correlation between these two measurements for NPB benchmarks, then

we can deduce that it is sufficient to only model cores and memory performance events in order

to estimate total power as it can be calculated from cores and memory power using the fitted

line. Fig. 1 shows the results we have obtained.

M. Puzović, E.K. Lee, V.V. Elisseev

2018, Vol. 5, No. 4 29



Figure 3. Actual instantaneous power (blue) and mean power (red) used by the model to rep-

resent power consumption of the application

There is almost perfect correlation between RAPL and PIB values that can be approximated

by a quadratic fit4. The outliers are three benchmarks integer sort (is.C), STREAM and multi-

grid (mg.C). These three benchmarks are using uncore events that are not covered by RAPL.

Secondly, in order to calculate coefficients A, B and C on Intel Xeon E5 v4, we ran NPB

and STREAM benchmarks at CPU frequencies ranging from 1.2 GHz to 2.3 GHz in steps of

0.1 GHz and performed a linear regression using the obtained results and equation 2. We used

the nominal frequency of 2.0 GHz as a baseline frequency (f0). For IBM POWER8 we have

used CPU frequencies ranging from 2.5 GHz to 4.0 GHz and nominal frequency of 3.4 GHz.

Since Cavium ThunderX does not support power gating, we eliminated implementation of this

microarchitecture in this test. As soon as we obtained the coefficients, we estimated accuracy

of the model by comparing estimated and actual power consumption for the benchmarks used

by regression analysis. Figure 2 shows the difference between the estimated power consumption

using a linear regression model and actual power reading from IBM POWER8 for all NPB and

STREAM benchmarks and frequencies from 2.5 GHz to 4.0 GHz.

If the model is good, we expect most of benchmarks under various frequencies to be in one

of the shades of green or light blue because in this case the difference between estimated and

actual power is close to zero. This is applicable for such benchmarks as unstructured adaptive

mesh (ua.C), lower-upper Gauss-Seidel solver (lu.C) and block tri-diagonal solver (bt.C). On

the other hand, for such benchmarks as data cube (dc.B) and mg.C, accuracy depends on the

CPU frequency. At higher frequency, the model overestimates the consumed power, while at

lower frequencies it underestimates it. It also should be noted that for benchmarks ft.C and

embarrassingly parallel (ep.D) the model estimates power quite accurately at high frequencies

while it overestimates it at lower frequencies. Both of these behaviours could be caused by

choosing the nominal frequency (namely, 3.4 GHz) as a baseline frequency. Furthermore, we can

also notice on Fig. 2 that NPB and STREAM benchmarks do not cover the whole spectrum of

possible combinations. For example, we can see that none of the benchmarks are in the top-right

corner, where there is a high TPI and high average power consumption; and also, none are in

the bottom-left corner where there is a low TPI and mid- to low-power consumption. This shows

that some benchmarks might be over- or underestimated because they belong to an uncovered

region.

Thirdly, the model provided in [2] uses power consumption averaged over the application’s

runtime. This approximation works well when there is no significant power variability during its

4The model of quadratic fit is −0.0003 × x2 + 1.2614 × x + 12.3405
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(a) Regression model (b) Neural Network-based model

Figure 4. Power estimation accuracy of SPLASH2 benchmark suite on IBM POWER8

operation. But that is not always the case. Shown in blue in Fig. 3 is the shape of the running

power during execution of the benchmarks, and shown in red is the constant power that is used

for building the model. While comparing Fig. 3 with Fig. 2, We noticed that that model is fairly

accurate for such benchmarks as ep.D, where there is an overlap between the blue and the red

lines. Benchmarks such as bt.C, lu.C and ua.C belong to this category as well. For benchmarks

in which it is not the case, such as dc.B and STREAM, we noted significant differences. This can

have a significant impact on accuracy of the estimation.

Finally, in order to conduct further testing of the model, we ran all benchmarks from the

SPLASH2 [28] benchmark suite. None of the results from these benchmarks were used by the

linear regression model to find coefficients. Figure 4 shows results for POWER8 at the frequency

of 4.0 GHz. The red bar is the whole benchmark run (including sequential and parallel regions

of the code); the blue bar indicates that only parallel region of the code is measured. With only

parallel region measured, the CPU utilisation is higher and, as a result, we expect to see higher

accuracy of the power estimation model.

Figure 4 (a) shows that the model based on equation (2) provides accuracy of power eval-

uation only between 30% and 40%. It is a clear indication that the linear regression model has

difficulty in covering a broader range of application with different execution profiles. Figure 4 (b)

shows that the NN-based model is accurate within 5% for exactly the same range of parameters.

In the next Section, we will discuss in details how to use the Neural Network-based approach

to improve accuracy of power estimation. In order to improve the accuracy as shown in analysis

in this Section, it is not enough just to focus on performance counters that account for executed

instructions and data transfers. If we apply the Neural Network-based model developed in the

next Section on hardware performance counters from Tab. 2, we drop power consumption mis-

prediction to a further extent than the one shown in Fig. 4 (b). Furthermore, it is necessary to
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increase the number of benchmarks in the training set in order to cover the wide spectrum of

future application characteristics. In this regard, we start the next Section by describing addi-

tional hardware performance counters that we sampled in order to improve accuracy. We also

review an extended benchmark set before describing the Neural Network model that utilities

them.

3. The Neural Network Model

In this Section, we provide details of our Neural Network–based power consumption predic-

tion model, as well as the training sets used and the model’s validation. Our model improves

linear regression model predictions while using the same hardware performance counters, and

extends the model by taking into account a wider range of counters.

Our model is a proof–of–the-concept prototype that can make fine–grained power predic-

tions. We used the same hardware given in Section 2 as described in Tab. 1. The MATLAB

Neural Network Toolbox [11] is used for the modelling.

3.1. Hardware Performance Counters and Benchmarks

It is possible to reveal plenty of power consumption information by monitoring hardware

performance counters because they directly measure events that correlate with the energy used

during the application execution. The aim of our work is to find the minimum set of hardware

performance counters that highly correlate with the amount of power consumed. As in [23], we

looked at a large number of available hardware performance counters across three different micro

architecture implementations and selected the following counters:

• Instructions Per Cycle (IPC) – it was previously shown that power consumption of a

processor is highly dependent on this metric.

• Dispatched/Fetched Instructions (IFETCH) – the previous metric (IPC) only ac-

counts for instructions that have been retired, but it doesn’t take into account instructions

that have been speculatively executed. These instructions still consume power. Therefore,

we keep track of them using this counter.

• Stalls (STALL) – due to multiple issues and out-of-order execution, contemporary pro-

cessors stall due to dependencies such as data and resource conflicts. The conflicts draw

power and are not accounted by any of the previous counters.

• Branch hit ratio (BR) – in order to find contribution to power consumed of speculatively

executed instructions due to branch misprediction, we also measure percentage of correctly

predicted branches during the application execution and use that information to further

refine the results from IFETCH and STALL hardware performance counters.

• Floating point instructions (FLOPS) – for HPC applications, the largest contributor

towards power consumption are instructions that are utilising the floating point unit as

they represent the majority of executed instructions.

• Cache and memory hit and miss – once there is a miss, the processor needs to bring

data from the memory in order to operate on it; the power is required to move this data.

Due to the fact that with the previous counters we only measured power that is consumed

within the processor, we also measure the number of hits in local cache (L1) and the

number of misses in the shared last level cache (LCCM).
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Table 3. Hardware performance counters used on Intel Xeon E5 v4, IBM POWER8 and Cavium

ThunderX microarchitecture implementations to record metrics as described in Section 3.1

Event Intel Xeon E5 v4 IBM S822LC Cavium ThunderX

IPC EVENT CPU CLK UNHALTED PM RUN CYC CPU CYCLES

EVENT INST RETIRED PM RUN INST CMPL INST RETIRED

IFETCH EVENT ISSUED PM INST DISP ISSUE

STALL EVENT RESOURCE STALLS PMU CMPLU STALL STALL BACKEND

BR EVENT BR INST EXEC PM BR CMPL BR RETIRED

EVENT BR MISP EXEC PM BM MPRED CMPL BR MIS RETIRED

FLOPS FP ARITH INST PM FLOP ASE SPEC

VFP SPEC

L1 MEM LOAD RETIRED L1 HIT PM DATA FROM L2 L1D CACHE REFILL

L1D CACHE

LCCM UNC CBO CCACHE LOOKUP.ANY REQ PM MEM READ L2D CACHE REFILL LD

UNC CBO CCACHE LOOKUP.I PM MEM PREF L2D CACHE REFULL ST

UNC ARB TRK REQUEST.EVICTIONS PM MEM RWITM L2D CACHE WB VICTIM

L2D CACHE WB CLEAN

The hardware performance counters that we have obtained are intuitive. Power consumption

of the processors depends on the number of directly executed instructions (IPC). The power

used to move data and instructions from memories before execution is accounted by L1 and

the IFETCH counter, while moving data from further away is modelled by LCCM and the

processor stalls (STALL) whilst it is waiting for data to become available. Furthermore, the

accuracy of the processor stalls is improved by tracking correctly predicted branches (BR) as

well. Finally, since the focus of this work lies on HPC–like workloads, we are also tracking

the floating point instructions (FLOPS) since they represent the majority of instructions in

these types of workloads. Table 3 shows the events that we sampled for each of the three

microarchitecture implementations shown in Tab. 1.

In order to increase the size of the training set for our model, we have used extra four

benchmark suites in addition to the NPB benchmark suite. The first two benchmark suites are

Splash-2 [28] and the Princeton Application Repository for Shared–Memory Computers (PAR-

SEC) [6]. Splash2 is a mature benchmark suite that contains a wide range of HPC and graphic

applications, while PARSEC consists of benchmarks which are representatives of emerging work-

loads found in domains of data mining and media processing. We used 12 benchmarks from each

of Splash2 and Parsec suites . The third benchmark suite is Mantevo [15]. Mantevo pioneered

the concept of using miniapps to drive hardware/software co–design. The miniapps are proxies

which combine some or all aspects of dominant computational kernels into standalone appli-

cations. We used 12 miniapps from Mantevo benchmark suite, which cover domains of finite

elements, molecular dynamics, contact detection and electrical circuits. The fourth benchmark

suite is a set of proxy applications from LLNL [16] that represent Monte Carlo particle transport,

radiation diffusion and Livermore Loops. We used 7 benchmarks from this suite.

3.2. Model Description and Validation

The computational neural network (NN) is inspired by biological neural networks to predict

or approximate functions that can depend on a large number of inputs. There are two phases

when in using a neural network: training and deployment. During the training phase, neurons in

each layer are adjusted iteratively using the training data. Then, the trained neurons are used to

predict the new output in the deployment phase. Fig. 5 shows our neural network design. First,
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Figure 5. Neural Network–based prediction approach

input data is pre-processed to obtain steady-state power. Second, pre-processed input data is

fed to the input layer of the neural network for training.

In our case, the input layer consists of processor activity hardware counters and data activity

hardware counters as shown in Tab. 3, which we identified to be the major sources of power

draw. An entire data set was collected for three different microarchitectures using five benchmark

suites. In order to have the same basis for the comparison between the neural network and

a regression model, we updated the regression model from Section 2.1 to take into account

hardware performance counters that we sampled as shown in Tab. 3. We conducted experiments

with different numbers of runs per each benchmark to test the impact of data set size on the

neural network model’s accuracy. As shown in Fig. 6 (a), we noted that if the same benchmarks

are run multiple times, overall accuracy of the NN model increases. Figure 6 (b) shows that

accuracy of the NN model increases as we increase the number of different benchmarks in the

training set.

If we 5 times run each benchmark from each suite on Cavium ThunderX ARM implementa-

tion, the error in power consumption estimation is around 3%, while if each benchmark is ran 20

times, the error drops below 1%. We noticed no further increase in accuracy by increasing the

number of runs beyond 20, which indicates a convergence threshold for the NN model. Neither

accuracy improvement was observed by the regression model (REG) as well.

Accuracy improvement with an increased number of runs of the same benchmark occurs

due to the fact that a benchmark’s profile differs from run to run as illustrated in Fig. 7. For

example, by using the Cavium ThunderX microarchitecture we obtain a different spread of

values for IFETCH counter between different runs of PARSEC benchmarks. Such variance in

data provides additional data points for NN model training, which improves its accuracy. As

mentioned in the previous paragraph, we determined that the ideal number of runs for each

benchmark from each suite is 20. It should be noted that data variance/noise has a negative

impact on accuracy of the linear regression model.

After the training phase, the neural network is deployed to provide node power predictions.

The information flow of the training phase and the deployment phase is shown in Fig. 5 as a

solid blue line and a dotted red line, respectively. In a neural network, each connection between

neighbouring layers has a weight to scale data and a bias that allows shifting the activation

function. Data points from the input layer are inserted as inputs to the next consecutive layers

(hidden layers). Then, the hidden layers sum the data fed to them, scale (weight) the data, and

process it until the data reaches the last layer that outputs the predicted node power:
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(a) The number of each benchmark runs (b) The number of benchmarks

Figure 6. Power estimation accuracy as a function of benchmark runs and number of benchmarks

Figure 7. The variance of IFETCH hardware performance counter on Cavium ThunderX

microarchitecture implementation
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(a) Intel 64 (b) Cavium ThunderX

Figure 8. Error in power estimation between regression and neural network model for Intel 64

and Cavium ThunderX ARM microarchitecture implementations

wij(k + 1) = wij(k)− η δek
δwij

, (3)

where η is the learning rate parameter which determines the rate of learning. wij represents the

scalar value of weight on the connection from layer i to j. ek represents the error of NN at kth

iteration. δek/δwij determines the weighted search direction for this iterative method.

The weights and biases of the network are updated only after the entire training set has

been applied to the network. We used 10–fold cross-validation to validate our model where 90%

of randomly selected data is used as a training set and 10% is used as a validation set. The

gradients calculated for each training set are added together to determine the change in weights,

and biases. The weights and biases are updated in the direction of the negative gradient of the

performance function.

For our neural network model we have tried three commonly used back–propagation algo-

rithms: Levenberg–Marquardt [21], Scaled conjugate gradient [20], Resilient [22], and Bayesian

Regularization. The Bayesian Regularization algorithm performs the best in terms of accuracy

(showing the minimum mean error) but has more computational overhead (showing higher train-

ing time). Scaled conjugate gradient and Resilient perform the best in terms of computational

overhead, showing less time for training than the other algorithms. As a result of this analysis,

we decided to use the well-balanced Levenberg–Marquardt back propagation algorithm for all

our experiments. However, the Bayesian Regularization back–propagation can be used provided

the model’s accuracy is a constrain. Scaled conjugate gradient or resilient algorithms can be

used provided the learning overhead is a constraint.

Figures 8 and 9 show results that we have obtained on three micro-architectures. For each

microarchitecture, the NN model provides higher accuracy compared to the regression model.

The largest improvement in accuracy was observed for Cavium ThunderX ARM architecture

as it is the simplest architecture to model with an in–order processor and a simplified two–

level cache hierarchy. Even though this microarchitecture is the simplest of the three studied,

the linear regression model is less accurate than the neural network model. Note that both

models are least accurate on Intel 64 microarchitecture, while they are the most accurate on

IBM POWER8 microarchitecture. This is due to the fact that performance counters which we

identified in Section 3.1 are better indicators of power consumption on IBM POWER8. As part

of our further work, we are planning to research which counters are better suited for Intel 64 and

A Study on Cross-Architectural Modelling of Power Consumption Using Neural Networks

36 Supercomputing Frontiers and Innovations



Figure 9. Error in power estimation between LR and NN models for POWER88 micro-

architecture implementation
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Figure 10. Importance of each hardware performance counters in power consumption estimation

using the neural network model

Cavium ThunderX architectures. It is also important to note that significant improvements in

accuracy for all three different microarchitectures stop around the fifth most important hardware

counter. Figure 10 shows importance of each hardware performance counter from Section 3.1 for

power consumption estimation.

Figure 10 suggests that it would be very difficult to use a neural network model devel-

oped for one architecture in order to estimate power consumption on the other architecture.

Importance of different hardware counters for power consumption estimation is different for

different microarchitectures. For example, Intel 64 and Cavium ThunderX microarchitectures

are of similar importance to the same hardware performance counters except for STALL and

FLOPS. STALL is more important for Cavium ThunderX micro-architecture because it is an

in-order processor, and once there is a stall, instructions throughput and power consumption

drop significantly. On the other hand, the floating point unit on Intel 64 is optimised for a very

high throughput, and as a result, it consumes plenty of power on the floating-point heavy code.

IBM POWER8 micro-architecture implementation behaves differently from Intel 64 and Cavium

ThunderX. Since IBM POWER8 has been optimised for a high throughput, the counters that

reflect the number of executed instructions and correctly predicted branches are the most im-

portant. Also, since the power cost of a cache that is missing and/or shared in a local is high, the

access to remote memory (LLC) is very important when measuring power consumption. Note
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Table 4. The error in estimating power on IBM POWER8 S822LC and Cavium ThunderX ARM

when using the neural network model trained on Intel 64 microarchitecture implementation

Microarchitecture Implementation IBM POWER8 S822LC Cavium ThunderX ARM

Error in power estimation (%) 77% 64%

that due to a very well-developed pre-fetching mechanism on IBM POWER8 microarchitecture,

local cache hits (L1) do not contribute to power consumption estimation on this architecture.

Nevertheless, we tried to apply a model trained on results from Intel 64 to estimate power

of benchmarks’ ran on Cavium ThunderX and IBM POWER8 microarchitecture implemen-

tations. The results are shown in Tab. 4. As expected, since Intel64 and Cavium ThunderX

give similar importance to the same hardware performance counters, the power estimation on

Cavium ThunderX microarchitecture implementation in Tab. 4 is more accurate then on IBM

POWER8. Unfortunately, the accuracy is significantly worse when compared to Fig. 8 and 9.

This is mainly due to the difference in importance of the same hardware performance counters

that each microarchitecture implementation assigns. Furthermore, since the regression model

is better off then the neural network model in both cases, there is space for improvement in

the training phase of the neural network model in order to improve prediction accuracy. As

part of the further work, we are planning to add results from Tab. 4 as part of training to

the neural network model in order to make the neural network aware of different weights that

each microarchitecture implementation assigns to the semantically same hardware performance

counters.

Conclusions and Future Work

We demonstrated how to use hardware counters to develop models of power consumption

for a broad range of HPC applications on three different microarchitecture implementations:

Intel 64, IBM POWER8 and Cavium ThunderX ARMv8.

We demonstrated 2× to 3× better accuracy predictions using the NN model for power

consumption compared to the LR model.

We provided a comparative analysis of the importance of different hardware counters for

power consumption across three microarchitectures. We believe that results of our work can

contribute to software/hardware co–design efforts towards developing unified, cross-architectural

models to predict power consumption.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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