
Exploiting the Performance Benefits of Storage Class Memory

for HPC and HPDA Workflows
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Byte-addressable storage class memory (SCM) is an upcoming technology that will trans-

form the memory and storage hierarchy of HPC systems by dramatically reducing the latency

gap between DRAM and persistent storage. In this paper, we discuss general SCM characteris-

tics, including the different hardware configurations and data access mechanisms SCM is likely to

provide. We outline the performance challenges I/O requirements place on traditional scientific

workflows and present how data access through SCM can have a beneficial impact on the perfor-

mance of such workflows, in particular those with large scale data dependencies. We describe the

system software components that are required to enabled workflow and data aware resource allo-

cation scheduling in order to optimise both system throughput and time to solution for individual

applications; these include a data scheduler and data movers. We also present an illustration of

the performance improvement potential of the technology, based on initial workflow performance

benchmarks with I/O dependencies.
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Introduction

Today’s supercomputers offer a computing environment that focuses on compute perfor-

mance first and foremost. The advent of byte-addressable non-volatile memory however means

that in the coming years supercomputers will have sufficient memory capacity per compute node

to no longer be exclusively used (and useful) for high-performance scientific computation (HPC),

but also for high-performance data analytics (HPDA). Rather than simply ingesting data that

was generated on a different system, input data for simulations will be prepared directly on the

supercomputer where the simulation will be executed, and simulation output will be analysed

and post-processed there as well. We predict that the mix of applications running on supercom-

puters will become broader: in addition to the largely compute intensive HPC applications, there

will be memory and I/O intensive HPDA applications as full scientific workflows are enabled

on a single system. This break in the status quo motivates the contributions of this paper: a

discussion of the performance benefits of non-volatile memory, in particular with a view to opti-

mising the end-to-end performance of workflows with complex compute and data dependencies;

and a description of the system software infrastructure that is necessary to support them.

1. Storage Class Memory

Byte-addressable, non-volatile memory (hereafter referred to as Storage Class Memory, or

SCM) represents the latest advance in memory technologies. SCM promises to deliver both

greater performance and endurance than existing storage technologies, as well as increased den-

sity in comparison to DRAM. Compute platforms with SCM will have access to non-volatile

memory that is capable of storing several TBs of data per node. This very large memory ca-

pacity for servers, and long term high-performance persistent storage within the memory space

of the servers, means that new techniques for performing I/O will emerge. SCM enables Direct
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access (DAX) from applications to individual bytes of data; this is fundamentally different from

the block-oriented way I/O is currently implemented [9].

Several manufacturers are working on delivering byte-addressable SCM to the market within

the next few years. The development that is furthest advanced to date is the result of a collabo-

ration by Intel and Micron, the 3D XPointTM NVDIMM [3]. As the name implies, this SCM sits

in the DIMM slots next to the CPU and alongside DRAM, with access to the NVDIMM space

managed via the processor’s memory controller. Unlike DRAM however, data that is stored

on the NVDIMM is persistent, which means that it can be used as a (potentially long-term)

storage environment as well as memory. 3D XPointTM NVDIMMs can be used in two differ-

ent modes [6], which have implications for how applications can exploit these memory spaces.

Changing between the two modes requires a system reboot.

1.1. Data Access

SCM has the potential to enable synchronous byte-level I/O, moving away from the asyn-

chronous block-based file I/O applications currently rely on. In current asynchronous I/O, ap-

plications pass data to the operating system (O/S) which then uses driver software to issue an

I/O command, adding the I/O request into a queue on a hardware controller. The hardware

controller will process that command when ready, notifying the O/S that the I/O operation has

finished through an interrupt to the device driver.

SCM can be accessed simply by using a load or store instruction, as with any other memory

operation an application undertakes. This may require an additional instruction to ensure the

data is persistent (fully committed to the non-volatile memory), if persistence is required by

an application, or such persistence guarantees may be provided by the hardware through fault

tolerant power supplies protecting volatile memory within the system (such as asynchronous

DRAM refresh). With SCM providing significantly lower latencies than external storage devices,

the traditional I/O block access model, using interrupts, becomes inefficient because of the

overhead of context switches between user and kernel mode (which can take thousands of CPU

cycles). Furthermore, with SCM it becomes possible to implement remote access to data stored

in the memory using RDMA technology over a suitable interconnect. Using high performance

networks can enable access to data stored in SCM in remote nodes faster than accessing local

high performance SSDs via traditional I/O interfaces and stacks inside a node. Therefore, it is

possible to use SCM to greatly improve I/O performance within a server, increase the memory

capacity of a server, or provide a remote data store with high performance access for a group

of servers to share. Such storage hardware can also be scaled up by adding more SCM memory

in a server, or adding more nodes to the remote data store, allowing the I/O performance of a

system to scale as required.

However, if SCM is provisioned in the servers in a supercomputer, there must be software

support for managing data within the SCM. This includes moving data as required for the jobs

running on the system, and providing the functionality to let applications run on any server and

still utilise the SCM for fast I/O and storage (i.e. applications should be able to access SCM in

remote nodes if the system is configured with SCM only in a subset of all nodes).

As SCM is persistent, it also has the potential to be used to implement techniques for re-

siliency, providing backup for data from active applications, or providing long term storage for

databases or data stores required by a range of applications. With support from the system

software, servers could be enabled to handle power loss without experiencing data loss, effi-
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ciently and transparently recovering from power failure. Applications could resume from their

latest running state and maintaining data, with little performance overhead, especially com-

pared to current techniques of writing data to external storage devices such as high performance

filesystems.

1.2. 1-Level Memory

The first of the two modes that SCM can operate in is 1-level memory, or 1LM, which

views main memory (DRAM) and NVRAM as two separate memory spaces, both accessible by

applications (see Fig. 1). This mode is conceptually similar to the Flat Mode configuration of

the high bandwidth, on-package, MCDRAM in current Intel Xeon PhiTM processors (code name

Knights Landing or KNL) [10]. DRAM is managed via standard memory APIs, such as malloc,

and represents the only visible memory space for the operating system. The NVRAM on the

other hand is managed by persistent memory and filesystem APIs, such as pmem i/o [8] and

mmap, and presents the non-volatile part of the system memory. Both allow access via direct

CPU load and store instructions. In order to take advantage of SCM in 1LM mode, either the

system software, or the applications have to be adapted to be able to manually use these two

distinct address spaces.

Node

DRAM

Memory levels

NVRAM

CPU

Application 
Direct 
regions

OS Main Memory

2-Level Memory

*https://www.google.com/patents/US20150178204 19

Figure 1. 1LM mode, where DRAM and NVRAM are two separate memory spaces

1.3. 2-Level Memory

2-level memory, or 2LM, configures DRAM as a cache in front of the NVRAM (see Fig. 2).

Applications only see the memory space of the SCM; data that is being used is transparently

stored in DRAM, and moved to SCM when no longer immediately required by the memory

controller (as in standard CPU caches). This is very similar to the Cache Mode configuration

of MCDRAM on KNL processors. This mode of operation does not require applications to be

altered to exploit the capacity of SCM, and aims to give memory access performance at near

to main memory speeds whilst providing the large memory space of SCM. Exactly how well the

main memory cache performs depends on the specific memory requirements and access pattern

of a given application. Furthermore, in this mode the persistence of the NVRAM contents cannot

be guaranteed, due to the volatile nature of the DRAM cache that, at any given time, may hold

updated versions of data stored in NVRAM. Therefore, the non-volatile characteristics of SCM

are not exploited in this mode of operation. In 2LM mode, it is also possible to divide the SCM

space into two partitions: memory (not persistent) and “app direct” (persistent).
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Figure 2. 2LM mode, where DRAM is a cache to the NVRAM memory space

1 #SBATCH −−ntasks=64

2 #SBATCH −−time=01:00:00

3

4 cd job1

5 mpirun −n 64 ./job1

6 cd ../job2

7 mpirun −n 32 ./job2

8 cd ../job3

9 mpirun −n 1 ./job3

Figure 3. Single SLURM script submission: there is no queuing time between jobs, but the

maximum number of resources is used throughout

2. Workflows

Many scientific simulations are the result of a workflow, i.e. a series of applications that

each perform a specific task within the simulation, rather than that of a single application [2]. A

workflow may include steps such as data pre-processing and manipulation, computational sim-

ulation, output reduction and post-processing, or visualisation. The capacity and performance

characteristics of SCM mean that steps of a workflow that would previously have been executed

away from the main supercomputer (e.g. on a dedicated high-memory system) are more likely to

be performed in situ. Moving the entire workflow onto a single system simplifies the simulation

setup and removes the need to make simulation data available across multiple systems. Users

currently set up such workflows in three different ways:

1. By putting all the jobs into a single script, requesting the maximum number of resources to

be required by the steps of the workflow at any point in time (see Fig. 3).

2. By creating a chain of jobs, each requesting the correct amount of resources, for example

by submitting the next job in the workflow through inserting a job submission command at

the end of the preceding job (see Fig. 4).

3. By specifying dependency conditions using the job scheduler (see Fig. 5).

Only the final one of these three options implicitly supports the notion that there can be a

dependency between jobs, however the dependency in this case is limited to being temporal.

Two different types of workflows can be envisaged: firstly, monolithic workflows are com-

prised of applications that each use the same amount of resources (i.e. the same number of

compute nodes); and secondly, composite workflows that consist of applications with varying

demands on the resources. The example in Fig. 3 is an instance of composite workflow.
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1 #SBATCH −−ntasks=64

2 #SBATCH −−time=01:00:00

3

4 cd job1

5 mpirun −n 64 ./job1

6 cd ../job2

7 sbatch job2.sh

Figure 4. Basic job chaining in a SLURM script: the chained job will be put into the queue as

if it was submitted manually

1 JOB1 ID=$(sbatch job1.sh)

2 echo $JOB1 ID

3 sbatch −−dependency=afterok:$JOB1 ID job2.sh

Figure 5. Defining a dependency in SLURM: the scheduler uses the job ID to check that the

preceding job has completed successfully, and the next job is then submitted into the queue

All of the three workflow setup approaches can have drawbacks: the first approach minimises

the end-to-end runtime Tall, because there is a single queuing penalty Tqueue at the start of the

job which has to be added on to the time when the job is running Trun. However, unless all the

workflow steps require the same number of compute nodes, i.e. unless the workflow is monolithic,

this approach is wasteful in terms of resources, because the maximum number of compute nodes

Rmax is used for the entire duration of the job:

Tall = Tqueue +
N∑

i=1

T(i,run), (1)

Rall = Rmax ∗ Tall. (2)

If there is a large discrepancy between the resources required by each workflow step (say

if one of the steps is serial and another uses hundreds of nodes), not only does this approach

quickly become very expensive, it also impacts the utilisation of the system, because although

nodes are allocated to a job, they are not active all the time the job is executing but remain

remain unavailable for other jobs.

The second and third approaches minimise resource utilisation in the composite workflow

case, because for each step N , the correct amount of resources is requested. The time to comple-

tion for the workflow however will now have to include additional queuing time Tqueue on top of

compute time Trun for each of the N steps of the workflow. On a busy machine where queuing

times are long, this approach can have a significant impact on the total time to solution:

Rall =

N∑

i=1

Ri ∗ Ti, (3)

Tall =
N∑

i=1

T(i,queue) + T(i,run). (4)
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2.1. Workflows with Data Dependencies

On today’s supercomputers, data dependencies with workflows are largely implemented by

sharing data through files that are written to, and read from, a shared file system. Therefore,

regardless of the approach that is taken for the execution of the workflow, Trun includes reading

data from the file system at the start of a job, and writing results back at the end, in addition

to performing the computation:

Trun = TI/O + Tcompute. (5)

The aim is to minimise both the resource utilisation Rall and the time to solution Tall by

providing true support for complex workflows within the job scheduler, and by reducing the I/O

component TI/O of the runtime as much as possible through allowing workflows to share data

without writing to a file system that is external to the compute nodes.

For supercomputers that execute a lot of data-intensive workflows, I/O performance presents

a considerable performance bottleneck that the arrival of SCM will help alleviate. On a system

with SCM, the data that is produced as part of a workflow can be kept on the compute nodes

to be consumed in situ until the workflow concludes. In 1LM mode for instance, this could be

achieved by simply using local files. In order to achieve this, the job scheduler and resource

manager must understand and support the notions of both workflows and of data locality, so

that individual steps of a workflow are placed on compute nodes that (ideally) already have a

copy of the data.
Workflows

Time

Re
so

ur
ce

s

Job 1

Job 3Job 2

Read-in, write-out
Temporary files 30

Figure 6. Example of a workflow where information is shared by writing out and reading in

data. Data written by Job 1 is ingested by Job 2; and data written by Job 2 is in turn ingested

by Job 3

Providing support for workflows without impacting the throughput of standard jobs is po-

tentially complex if no restrictions are applied to the workflows. We therefore limit our support

to workflows with the following properties:

1. At the time of submission of the workflow, the full workflow must be known, i.e. no extra

steps can be added while the workflow is active.

2. A workflow must have data dependencies.
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3. The temporal dependencies of the workflow steps must be fixed, i.e. each job must know

which job(s) immediately precede(s) and follow(s) it, and this cannot be changed.

4. As part of the workflow description, the data that is shared between the different jobs is

listed explicitly, and only this data forms part of the workflow.

2.2. Using SCM to Optimise Resource Usage and Time to Solution

SCM brings the opportunity for supercomputers to start offering more fundamental support

for workflows with data dependencies. SCM can adopt the role of large (persistent) memory or

of a fast storage device (or a combination of the two), which means that compute nodes with

local SCM will be able to tackle a much wider workload than traditional HPC systems. The

key benefit SCM offers is that it will allow applications to ingest and output data (in any form)

with minimal involvement from the external file system. Prior to a job running, its associated

input data can be pre-loaded onto the SCM of the compute nodes that will be allocated to the

job. Similarly, a job can write its final output data locally to SCM; once the job has completed,

and assuming the output data does not need to be read by another job, the data can be moved

off the compute node and onto external storage. The benefit is that compute resources are

used primarily for compute, and not for I/O, and time to solution and system throughput both

improve. In theory, once data has been moved from the network attached storage to the compute

node, it can remain there and be accessible until it is explicitly removed. In practice, there are

a number of questions that arise, such as: who is responsible for moving data to and from a

compute node; how long should data be kept on a compute node when it is not being used;

what is the impact of moving data in the background on the performance of all jobs; and how

does workflow support fit into a charging model for users. In order for workflow support to be

transparent to the user (a key requirement for usability), the system software must address these

questions.

3. Outline of Required System Software

The system software provides the functionality necessary to fulfil the requirements listed

above. From the perspective of providing transparent support for workflows, with not only

temporal but also data dependencies, a number of scenarios are supported:

• Applications can request to share data through SCM. This functionality is primarily for

sharing data between different components of the same computational workflow, but it

could also be used to share a common dataset between a group of users.

• A user can request for data to be loaded into SCM prior to a job starting, or for it to be

moved off SCM after a job has completed. This is not dissimilar to current Burst Buffer

technology and is not limited to workflows, but it supports the notion that data can be

moved in the background, while nodes are performing computations.

• Data access is restricted to the owner of the job or workflow, or to users that are explicitly

granted access. Encryption of data is enabled in order to make sure those access restrictions

are maintained.

• A user can choose between 1LM and 2LM mode, if they are supported by the SCM hard-

ware. Rebooting a node into a particular mode is achieved through the resource manager,

i.e. the user can specify the job environment in the batch submission script.
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• The resource manager can allocate nodes based on storage/memory capacity, as well as

compute. If data can be temporarily stored on a compute node, the capacity for storage

or memory that is available to other jobs will be reduced for the duration.

Figure 7. Sequence diagram describing how the workload manager, schedulers and data movers

implement a workflow

Figure 7 shows the main components that enable a workflow with data dependencies on a

system with SCM: the workload manager, the job and data schedulers, and the data movers.
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3.1. Workload Manager and Job Scheduler

As shown earlier, workload managers (the example in Fig. 5 shows SLURM [5]) allow for

users to define temporal dependencies between applications. However what is currently not

commonly possible on supercomputers is for data dependencies to be defined in the same way.

One reason for this is that HPC systems mostly do not have local storage, and it is therefore

not possible to keep data close to where the computation takes place: if the data has to be read

from or written to an external file system, there are no performance advantages to be gained

from understanding the data dependencies.

The workload manager must also be able to query a node’s mode of operation, and the

amount of free storage (or memory, depending on how the SCM is used) that can be assigned

to a job. This latter point is particularly important if data is left on a node for a period of time,

e.g. because the next step in a workflow is not ready, and the node’s compute capabilities can

be used for other work.

The data dependency requirements of a job or workflow are described in the submission

script in a similar way in which the compute resource needs would be outlined today. In addition

to listing the walltime and number of processes or nodes, the I/O requirements (including the size

of the data) are also described. With this additional information, and the workload manager’s

ability to query the system state, the job scheduler can (if there is sufficient capacity) assign the

components of a workflow to be near the data that forms part of this workflow.

The job scheduler is aware of the SCM resources in the system at all times, and it allows users

to specify SCM requirements and data movement requirements, to understand the configuration

of the compute nodes and to allow users to specify configuration requirements of compute nodes

for their jobs. The job scheduler communicates with all job scheduling and data scheduling

components of the system software, to enable the system to run in as efficient a manner as

possible and ensure user data is secure and safe. The job scheduler consists of multiple scheduling

components, including components that can schedule jobs based on data location or energy

policies.

3.2. Data Scheduler

The data scheduler operates under the instruction from other software components, be they

system software (e.g. the workload manager or job scheduler), or directly through the request

of an application. The main responsibility of the data scheduler is to orchestrate the migration

of data. This can be between the different hardware levels within a single node, independently

from an application, or between different nodes in the system, specifically to and from SCM on

other nodes over the high performance interconnect.

The data scheduler also keeps track of data and what hardware that data is located in.

On the compute nodes, the data scheduler component provides the local functionality to move

data between storage levels (e.g. filesystem, SCM, DRAM) as instructed by the higher level

component.

3.3. Data Movers

Data movers are simple software components that are used by the data scheduler to un-

dertake specific data operations, such as copying data between different filesystems, from local

to remote compute nodes, and between different data storage targets (for instance between an
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object store and a filesystem). Separate data movers implement different operations, allowing

targeted optimisations for each operation.

4. Assessing the Performance Optimisation Potential

To evaluate the potential for workflow optimisation that SCM, and an SCM aware job

scheduler, can enable we undertook some benchmarking of the I/O costs that a workflow can

experience. For these tests we create separate producer and consumer applications, that either

generate or read a set of data files. The applications can generate or utilise different numbers or

sizes of files to enable a range of different types of workflow interaction to be explored. These

applications do not perform any other work, and thus only represent the I/O aspects of the

workflow, but they do allow us understand the potential for performance optimisation from

SCM functionality over a range of hardware and workflow configurations. We evaluate workflow

I/O costs, writing data from the producer and reading data with the consumer, using a single

compute node, with three different hardware configurations:

1. External Lustre filesystem;

2. Internal SSD storage device;

3. Memory mapped filesystem.

The external Lustre filesystem is equivalent to many current HPC system configurations. The

internal SSD storage device represents compute node local storage, but without the potential

read and write performance that true SCM hardware offers. The memory mapped filesystem

represents performance that is closer to SCM technology. File-based I/O is generally subject to

O/S level caching, keeping recent data in memory for re-use rather than requiring the data to

be fetched from disk. Such caching can offer significant performance benefits for recently used

file data, but is not representative of workflows where applications could be run on different

nodes or at different times, and therefore would not be able to benefit from such I/O caching.

Therefore, we ran our single producer-consumer benchmarks both with and without I/O caching

to enable the evaluation of the benefit of such functionality and the impact of being unable to

utilise it.

The data is collected on a single dual-socket node containing 2 Intel Xeon Platinum 8160F

CPUs (24 cores @ 2.10 GHz each) with 192GB of DDR4 memory and a local 800GB Intel SSD

DC S3710 Series SSD device. The node is connected to a 750GB Lustre (version 2.9) filesystem.

Table 1 presents the average of 5 runs of each benchmark on the different hardware options we

have previously outlined without I/O caching, using the following file configurations:

• 10 files, each of 1GB (10 x 1GB);

• 100 files, each of 100MB (100 x 100MB);

• 1,000 files, each of 10MB (1,000 x 10MB).

The results presented are using a single producer and a single consumer application on the

node. It is evident from Tab. 1 that significant savings can be made to the workflow overheads

associated with transferring data between workflow components. Simple writing to a local storage

device (SSD) rather than the external filesystem reduces the I/O cost by up to five times.

Moving from writing to a traditional storage device to writing data to memory brings even

larger benefits, with the best performance around twelve times faster than writing to the local

disk, and around fifty eight times faster than writing to the external filesystem. Whilst SCM is

unlikely to achieve performance as good as memory mapped filesystem hosted on DRAM, these
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Table 1. Performance of workflow benchmark without I/O

caching (single producer-consumer), using three different

file configurations. The performance is reported as time in

seconds. Times in brackets are (write/read) times for the

(producer/consumer)

Hardware 10 x 1GB 100 x 100MB 1000 x 10MB

Lustre 291.41 (137.77/153.64) 216.68 (105.34/111.34) 196.80 (102.42/94.38)

SSD 61.26 (34.39/26.87) 54.53 (29.05/25.48) 54.44 (28.09/26.35)

Memory 4.97 (3.02/1.95) 4.47 (2.99/1.48) 4.70 (3.16/1.54)

Table 2. Performance of workflow benchmark with I/O

caching (single producer-consumer), using three different

file configurations. The performance is reported as time in

seconds. Times in brackets are the (write/read) times for

the (producer/consumer)

Hardware 10 x 1GB 100 x 100MB 1000 x 10MB

Lustre 144.36 (138.94/5.38) 104.26 (102.09/2.18) 103.90 (102.24/1.64)

SSD 36.12 (34.37/2.04) 30.73 (29.11/1.62) 30.08 (28.28/1.80)

Memory 4.62 (3.00/1.62) 4.66 (3.04/1.62) 4.91 (3.25/1.66)

results indicate the performance differences between storage devices, such as fast SSDs, and true

memory technologies.

Table 2 presents the average of 5 runs of the same benchmarks, but this time with I/O

caching enabled, highlighting the performance optimisation potential enabled by a SCM and data

aware job scheduler. It is evident from the results in the table that both the external filesystem

and internal storage device benefit significantly from I/O caching enabled at the operating

system level. The retention of data within the compute node can improve the performance even

with fast I/O devices. We note that I/O caching does not significantly impact the memory

mapped filesystem as that approach is already keeping data in memory rather than requiring

I/O to access the underlying persistent storage device. As well as evaluating a single producer-

consumer combination, we also evaluated the performance impact of workflow optimisation with

SCM using multiple producer-consumers on a single node. We benchmarked using 36 producers

and 36 consumers, running the same tests as before, albeit with smaller numbers of files to

enable the benchmarks to finish in a reasonable time, and the data to be resident in memory.

Table 3 presents the results of the no-caching test, with the main number as the maximum

runtime (maximum write time plus maximum read time) for the workflow, and the number in

brackets as the minimum runtime (minimum write time plus minimum read time). It is evident

from the table that the performance impact of multiple processes undertaking I/O at the same,

or similar, times is significantly larger with the external filesystem than that with the local

device or writing data to memory.

The performance differential between the Lustre and SSD benchmarks is larger for the mul-

tiple process tests (≈ 5.7 − 6.4×) than for the single process tests (≈ 3.6 − 4.6×). The Memory

benchmark performance is in fact significantly faster than the single producer-consumer bench-
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Table 3. Performance of workflow benchmark without I/O

caching (36 producer-consumers). Performance is reported

as maximum time in seconds (minimum time in brackets)

Hardware 1 x 1GB 10 x 100MB 100 x 10MB

Lustre 978.25 (790.15) 911.58 (591.07) 906.87 (829.00)

SSD 152.00 (142.99) 155.63 (138.14) 158.12 (150.78)

Memory 0.84 (0.77) 1.06 (0.79) 1.03 (0.66)

Table 4. Characteristics of the jobs used in the illustration

of the optimisation potential

Job ID Number of nodes TI/O (s) Tcompute (s) Trun (s) Part of Workflow?

1 4 10 + 30 50 90 y

2 1 10 + 0 180 190 n

3 15 10 + 0 30 40 n

4 1 20 + 10 400 430 n

5 7 10 + 10 70 90 n

6 15 10 + 10 20 40 n

7 4 30 + 120 180 330 y

8 8 0 + 60 250 310 n

9 4 10 + 30 10 50 y

10 2 20 + 30 150 200 n

marks, however we believe this is because I/O for the small data sizes used in these benchmarks

can exploit cache memory more efficiently. Furthermore, the performance variability of node

local I/O (SSD) is also significantly smaller (≈ 5% − 12%) than for the external filesystem

(≈ 9% − 54%), demonstrating another potential benefit of SCM (reduced performance variabil-

ity).

4.1. Illustration of Optimisation Potential

In this section, we give a simple example of how data aware workflow scheduling using SCM

can improve both the performance of the workflow itself, and improve the resource usage on the

system. We assume a system with 20 nodes and schedule 10 very short jobs onto these nodes. The

characteristics of the jobs are described in Tab. 4; for illustration purposes, each job is broken

down into three distinct phases (input, compute and output), and may or may not be part of a

workflow. Jobs that are not part of a workflow are scheduled onto the system by incrementing

ID in a round-robin fashion, if there is sufficient space to accommodate them. Jobs that are part

of a workflow required the preceding components of the workflow to be completed before they

can be executed; in our example, Jobs 1, 7 and 9 form a workflow with data dependencies. It is

assumed that no data is stored locally by default.
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Figure 8 shows a timeline of the allocation of the example jobs using a standard scheduler

that is not aware of data dependencies inside a workflow. As can be seen from the timeline, parts

1 and 2 of the workflow happen to be scheduled onto the same nodes by chance (i.e. node 0–3).

However, the 3rd component of the workflow is scheduled on nodes 16–19, because another job

has taken over the resources used by the first two parts of the workflow. Despite parts 1 and

2 of the workflow being scheduled on the same resources, Job 1 has to write its output to the

external file system. This data represents the input for Job 7, which in turn has to reload the

data from the external file system. The total individual runtimes for the workflow components

Trun are 90s, 330s and 50s, a total of 470s. However, because Job 9 is held in the queue for a

short amount of time (in this example 20s), the total time to solution Tall increases to 490s.

Figure 9 illustrates how the allocation changes if the scheduler understands data dependen-

cies and the importance of data locality in workflows. Two separate optimisations occur: firstly,

the 3 parts of the workflow are now scheduled to use the same nodes 0-3; secondly, and as a

direct result of the first step, data can now be kept locally on the compute nodes. There is no

need to access the external file system. I/O cost will be close to DRAM speed and thus vastly

reduced even when compared to SSD. In our example here, we assume (for simplicity) that I/O

cost tends to 0 when using SCM. The first job in the workflow still needs to read its input from

external storage, and the final job needs to write back to external storage, but all other I/O can

be local. This results in the following runtimes per job:

Trun,Job1 = 10s + 50s = 60s,

Trun,Job7 = 0s + 180s = 180s,

Trun,Job9 = 30s + 10s = 40s.

(6)

As the jobs are scheduled consecutively onto the same nodes, there is no additional queuing

time, and Tall is simply the sum of the individual runtimes, i.e. 280s.

As a further optimisation, which we do not consider in this example, it is possible to pre-load

and post-move the input/output data of particularly data-intensive jobs in the background, prior

to them starting execution, or after they have completed. This increases the resource allocation

constraints that the scheduler has to work around, however, the potential gains in time to

solution and resource utilisation are significant.

5. Related Work

Recent years have seen a lot of research emerge around the topics of I/O performance

(notably with the arrival of new storage technologies), scheduling of large-scale systems and

scientific workflows. Daley et al. [1] assess how Burst Buffers can alleviate the I/O bottleneck

of some scientific workflows, and acknowledge the associated data management challenges. Also

primarily focussed on Burst Buffers, Herbein et al. [4] discuss a technique for making scheduling

policies I/O aware, taking into account the different bandwidths of the storage hierarchy in order

to avoid I/O contention. Rodrigo et al. [7] address the idea of workflow-aware scheduling, having

recognised that workloads on HPC system are a more commonly comprised of an interdependent

series of jobs. They propose a workflow-aware extension to the the widely used SLURM scheduler,

which goes beyond the simple temporal dependencies between jobs that are supported in most

resource managers.
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Conclusions

In this paper, we outline the opportunities for performance improvements that byte-

addressable storage class memory, such as the upcoming 3D XPointTM NVDIMMs can bring

in particular to data intensive applications. We also present the system software that needs to

be put in place in order to support data aware workflow scheduling using persistent memory.

Overall, the benefits are clear: if a workflow can be scheduled so that its time to solution is

decreased, but without impinging on other jobs, the system resources are freed up sooner and

the total workload throughput for the HPC system is improved.
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