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Record-and-replay techniques provide the ability to record executions of nondeterministic ap-

plications and re-execute them identically. These techniques find use in the contexts of debugging,

reproducibility, and fault-tolerance, especially in the presence of nondeterministic factors such as

message races. Record-and-replay techniques are highly diverse in terms of the fidelity of replay

they provide, the assumptions they make about the recorded application, the programming models

they target, and the runtime overheads they impose. In the high performance computing (HPC)

environment, all the above factors must be considered in concert, thus presenting additional im-

plementation challenges. In this manuscript, we survey record-and-replay techniques in terms of

the programming models they target and the workloads on which they were evaluated, providing

a categorization of these techniques benefiting application developers and researchers targeting

exascale challenges. This manuscript answers three questions through this survey: What are the

gaps in the existing space of record-and-replay techniques? What is the roadmap to widespread

use of record-and-replay on production-scale HPC workloads? And, what are the critical open

problems that must be addressed to make record-and-replay viable at exascale?

Keywords: reproducibility, nondeterminism, fault-tolerance, exascale, message-passing, shared

memory, proxy application, HPC benchmarks.

Introduction

Record-and-replay (R&R) techniques provide the ability to monitor and record changes in

program state over one execution (i.e., the recorded execution) of an application and reproduce

those changes–and thus, the behavior of the application–during a subsequent execution (i.e.,

the replayed execution). The convergence of extremely high levels of hardware concurrency, the

effective overlap of computation and communication, and overall code complexity make R&R a

vital tool for coping with non-determinism in HPC applications. Non-determinism in HPC ap-

plications is a growing problem [1, 15, 48] and it manifests at multiple levels. Non-determinism

may manifest in low-level communication primitives (e.g., the inherent non-determinism of non-

blocking matching functions in MPI); it may manifest in libraries (e.g., dynamic load-balancing

libraries [29]); or it may manifest at the application level (e.g., Monte-Carlo simulations). The

common motivation of all R&R techniques is to manage these forms of non-determinism. Specif-

ically, R&R techniques play key roles in three different HPC contexts. First, these techniques

are used for debugging parallel programs that exhibit non-deterministic bugs during a code ex-

ecution when moving, for example, from a smaller to a larger scale or from one platform to a

different one. Second, R&R is useful during testing parallel programs, where users may want

to ensure numerical or scientific repetition of certain results despite, for example, not enforc-

ing specific message interleavings. Third, R&R techniques find alternative use in the context of

fault-tolerance where the execution of one or more processes may need to be rolled back and

replayed to recover from a fault.

This survey presents a rigorous classification of R&R techniques based on the program-

ming model the R&R technique targets (i.e., shared memory or distributed memory) and the

workloads on which the techniques have been evaluated (i.e., theoretical, non-HPC, HPC bench-

marks, and HPC applications). For each programming model, we refine our categorization based
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on the overall approach the technique takes (i.e., data-replay, order-replay, or a hybrid of the

two). This dimension is shown in Fig. 1 and 2 on the horizontal axis. The vertical axis roughly

corresponds to time, as we show the evolution of R&R techniques through conceptual eras. For

each technique, we indicate the category of workloads it is evaluated against. We consider four

categories: first, an absence of empirical evaluation (i.e., for purely theoretical works); second,

non-HPC workloads (e.g., network servers, as these are common evaluation workloads for shared

memory techniques); third, HPC benchmarks (e.g., the NAS Parallel Benchmarks); and fourth,

full HPC applications. In Fig. 1 and 2 we represent the paper that introduced each technique as

a box. The evaluation workloads are indicated by symbols in the boxes. For techniques that are

evaluated against multiple categories of workloads, multiple symbols are shown. Additionally,

due to the impact of logical clock algorithms on R&R (both for shared and distributed memory

techniques) and interest in leveraging specialized hardware (for shared memory techniques only),

we color the boxes corresponding to use of these features.
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Figure 1. Record-and-replay techniques for distributed memory programming models

Our survey targets three communities: 1) researchers who are interested in filling the gaps

in the existing space of R&R techniques; 2) developers and maintainers of HPC applications

who use R&R primarily as a debugging aid; 3) the community of researchers exploring uses

of R&R at exascale, including for fault-tolerance, resilience, and reproducibility. For each of

these communities we identify a guiding question that this survey answers. Our survey supports

researchers attempting to design R&R techniques that address so-far-unexplored regions of the

technique space. They will benefit from the taxonomy that this survey develops by learning how

to situate their work. The guiding question for this community is: Where are the gaps in the

technique space? An HPC developer benefits from this survey because it informs them about

which R&R techniques apply to their workloads. The guiding question for this community is:
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Figure 2. Record-and-replay techniques for shared memory programming models

What are the workloads to which R&R techniques apply? Finally, an exascale-centric researcher

benefits from this survey by gaining a holistic view of how R&R techniques have overcome scaling

challenges. The guiding question for this community is: What are the open problems standing

between the state-of-the-art in R&R and suitability for future exascale systems?

The remainder of the article is structured in the following way. In Section 1, we provide

terminology and definitions needed for evaluating R&R techniques. In Section 2, we discuss

techniques targeting shared memory programming models. In Section 3, we discuss R&R tech-

niques targeting distributed memory programming models, specifically focusing on techniques

targeting message-passing applications using MPI due to its prevalence in HPC. Conclusion

contains the lessons learned from our evaluation and concludes the article.

1. Concepts and Definitions

In this section, we introduce concepts and definitions that recur throughout the manuscript.

Regardless of whether an R&R technique is being used for debugging, computational repro-

ducibility, or fault-tolerance, the technique must observe and represent nondeterministic appli-

cation behavior during the recording phase, and then recover that same behavior during replay.

First, we introduce terms to describe the generic styles of R&R. Next, we define terms that

are common across all R&R techniques. We conclude this section by introducing the concept of

replay fidelity and relating it to the level of determinism present in the recorded application.

Data-replay techniques explicitly record the contents of communication. In the context of

R&R techniques for distributed memory applications, specifically message-passing applications,

a data-replay technique records the contents of messages. For techniques targeting shared-

memory applications, a data-replay technique records the values read from or written to shared
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memory locations. In contrast with data-replay, order-replay techniques only record the rela-

tive ordering of communication. In the context of distributed-memory applications, specifically

message-passing applications, an order-replay technique records the interleaving of message re-

ceptions. For shared-memory applications, an order-replay technique records the order in which

threads accessed shared memory locations. Order-replay techniques avoid the overheads asso-

ciated to copying and storing large message contents, but must make more assumptions about

the global ordering of communication (e.g., that messages are delivered through FIFO queues)

than data-replay techniques. Hybrid-replay techniques combine data-replay and order-replay

approaches in an attempt to balance the greater scalability of order-replay with the richness of

debugging information and flexibility that data-replay provides (e.g., replaying only a subset of

processes). Techniques that aim to avoid replaying many non-buggy processes in order to replay

a single buggy one are referred to as subgroup-replay techniques.

Every R&R technique builds up a representation of an execution during the recording phase.

This representation exists in memory during the recording and may be persisted to disk, either

in chunks during recording or all at once at the end, and necessarily imposes some overhead in

order to monitor events and update the representation. Consequently, we will refer to two kinds

of overheads: memory overhead and execution time overhead. The memory overhead refers to

the size of the in-memory representation, and the execution time overhead refers to the slowdown

relative to an unmonitored execution. Additionally, we will refer to the on-disk representation

as the trace of the execution. Each technique also defines a level of replay fidelity, by which we

mean a contract-like description of which events in the replayed run are guaranteed to match

those from the recorded run. For instance, a technique may guarantee that messages are received

by each process in the same order during replay only if they are sent in the same order during

replay. Another technique may guarantee that both types of events (i.e., receives and sends)

interleave in the same order. In this case, the second technique is said to have higher replay

fidelity than the first one.

Replay fidelity, specifically the ease with which the desired level of it can be achieved,

is intimately related to the determinism class [7] of the application being recorded. HPC ap-

plications commonly consist of intervals of deterministic computation bounded by periods of

communication or synchronization, which may incorporate some element of non-determinism.

The determinism class of an application is largely determined by how this communication is

implemented, specifically how it is overlapped by computation. Generally speaking, a high level

of replay fidelity is more challenging to achieve for applications the determinism class of which

is less strict.

2. Record-and-Replay for Shared Memory

In this section we discuss R&R techniques that target shared memory models. These tech-

niques target replaying the behavior of an application on a single node of an HPC system. The

presence of fat nodes and accelerators in HPC systems makes these techniques relevant for peta

and exascale computing. First, we discuss early approaches to R&R for shared memory appli-

cations. Next, we cover techniques that employed logical clocks as a means of managing trace

growth as systems scaled in size. Finally, we survey contemporary techniques which we classify

as either debugging-oriented (i.e., emphasizing high-fidelity replay) or targeting reproducibility

of execution characteristics in a more relaxed sense.
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2.1. Early Approaches – Plurality of Directions

From the late 1980s through the 1990s, R&R for shared memory models explored tradeoffs

between replay styles (i.e., data-replay vs. order-replay), but focused primarily on debugging,

and thus, high-fidelity replay. In 1987, LeBlanc introduced Instant Replay [23], which adopted

an order-replay approach of associating a version number to each shared-memory access. Instant

Replay is a common predecessor not only of later order-replay techniques for shared memory

models, but also of many techniques for distributed memory models as discussed in Section 3. The

empirical evaluation of Instant Replay was conducted on a 128-cpu system and used a Gaussian

Elimination workload, indicating early interest in facilitating debugging of HPC applications. In

contrast, Pan’s 1988 Recap [38] technique combined periodic checkpointing with a data-replay

logging approach. Additionally, Recap requires the compiler to generate instrumentation code,

rather than being implemented as a library. While achieving greater flexibility of replay (e.g., the

ability to replay from a checkpoint as opposed to the start of the execution), Recap is limited by

the daunting growth rate of its log. Beyond order and data-replay, hardware-assisted approaches

also emerged. The first R&R technique designed to explicitly take advantage of hardware was

introduced by Bacon and Goldstein in 1991 [3]. The latter technique logs traffic between the

main memory and caches and establishes a total order on shared-memory accesses by recording

instruction counter values.

In the early 1990s, Netzer introduced the shared memory version of his Optimal Replay

technique [35], addressing the overhead associated with tracing every shared memory access via

on-the-fly race detection using vector clocks [12]. Netzer’s work on Optimal Replay, both the

shared memory version discussed in this section and the distributed memory version discussed

in the following section, are among the first in the R&R space to acknowledge the need for

adaptive tracing, to explore the tradeoff between execution time overhead and the memory

footprint of the trace [33], and to leverage logical clocks. In both the original and subsequent

work on Optimal Replay, the technique was evaluated against the SPLASH-2 benchmark suite

on up to 16 threads.

To contrast with the overheads imposed by using vector clocks in [35], Levrouw et al. in-

troduced an order-replay technique [26] based on scalar logical clocks [22]. The authors provide

theoretical justification and empirical evaluation supporting their claim that their technique

can outperform its two major competitors at the time–Netzer’s Optimal Replay and LeBlanc’s

Instant Replay–both in terms of recording overhead and memory footprint. However, the eval-

uation workloads do not resemble HPC workloads (e.g., sorting) and are run on a maximum of

four threads.

This period of development culminated in Ronsse and de Bosschere’s RecPlay [45] debugging

framework. This work uses multiple kinds of logical clocks: scalar clocks to order synchronization

events during recording, and snooped matrix clocks [4] to do race detection during replay and

abort when data races prohibit correct replay. RecPlay was evaluated against the SPLASH-2

benchmark suite, demonstrating worst-case execution time overhead during recording of 25.9%.

As will be seen throughout the rest of this manuscript, the idea of augmenting R&R through

logical clocks persists to the present day.
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2.2. Broadened Scope: Adding Reproducibility

Contemporary approaches to R&R of shared-memory applications address a broad spectrum

of reproducibility challenges. In this section, besides the traditional debugging-centric techniques,

we discuss techniques that target more relaxed notions of reproducibility. Across these techniques

we observe two trends: increased diversity of programming models targeted, and increased

interest in hardware assisted approaches.

2.2.1. Reproducibility-Centric Techniques

Due to the overheads associated with high-fidelity replay, recent techniques targeting multi-

core systems have opted to relax the requirement of exactly replaying the recorded run. Instead,

these techniques try to replay a run the output of which matches the recorded run’s output,

regardless of the internal state-transitions that produce the output. Altekar introduced Output-

Deterministic Replay (ODR) [2], which records only a subset of the necessary information to

guarantee reproducible outputs but, augments this subset during replay with a search procedure

to iterate towards a thread schedule that reproduces the final state of the recorded run. While

this strategy can be applied to debugging, it can also clearly aid in situations where reproducibil-

ity of numerical outputs is desired. ODR was evaluated against a suite of applications including

three of the SPLASH-2 benchmarks and demonstrated average recording overhead of 1.6×.

Simultaneously, Park introduced a similar technique called Probabilistic Replay with Exe-

cution Sketching (PRES) [39]. PRES also relaxes the common replay fidelity requirement, but

in a different way. Rather than defining an equivalent execution more loosely, PRES proposes to

gradually approach exact replay over multiple replay runs. By building up an execution sketch

during recording and then iteratively exploring the constrained set of possible executions that

agree with the sketch, PRES is able to hone in on executions that reproduce a buggy run. The

evaluation was conducted on a subset of the SPLASH-2 benchmarks on up to four threads, at

which scale execution time overhead of 10.6% was observed for an N-Body workload.

Inspired by fault-tolerance, Lee introduced Respec [24] which also targets determinism at

the output level. In contrast with most popular techniques used at this point in time, Respec

runs its “replay” concurrently with the monitored execution, periodically checking for diver-

gence between the two runs and maintaining a checkpoint of the executions’ last agreed-upon

state. Respec manages overhead by only logging a subset of the most common synchronization

operations, and borrows ideas from fault-tolerance protocols to correct itself when the replaying

execution drifts too far from the monitored execution. Respec was evaluated, on up to four

threads, on the PARSEC and SPLASH-2 benchmark suites.

At the beginning of this decade, many codes are parallelized on HPC systems by using

a shared-memory model on each node coupled with a distributed-memory model for intern-

ode communication (i.e., the MPI/X model). Budanur et al., introduced an R&R technique

for studying memory inefficiencies in this scenario called ScalaMemTrace [6]. ScalaMemTrace

leverages Extended Power Regular Section Descriptors (EPSRDs) to exploit repeated behavioral

patterns across multiple levels of the memory hierarchy to realize a compressed representation

of a memory trace. ScalaMemTrace was evaluated against HPC-centric workloads, namely the

MPI/OpenMP implementation of the Sequoia AMG benchmark and two computational ker-

nels: matrix-matrix multiplication and vector addition. In a weak-scaling study of the kernels,

ScalaMemTrace’s compression afforded near-constant trace size on up to 64 threads, in contrast
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with the uncompressed version of the same trace which grew exponentially with the number of

threads. In a strong-scaling study of the AMG benchmark, the compressed traces grew linearly

with the number of threads, but nevertheless afforded a 50% reduction in size. The manuscript

acknowledges that ScalaMemTrace’s replay fidelity is limited, namely that the AMG benchmark

was only replayed at 91% accuracy.

2.2.2. Debugging-Centric Techniques

While the first reproducibility-centric R&R techniques appeared and evolved, as described

in the previous section, debugging-centric techniques still remain a high priority. The major

challenge shared memory presents for debugging is the sheer number of events (i.e., shared

memory accesses) that must be traced to ensure the high-fidelity replay required. Contem-

porary debugging-centric techniques address this challenge via two strategies: first, working

primarily at the software level (e.g., by employing an algorithm to ensure that a necessary and

sufficient trace is recorded for the desired level of replay fidelity); and second, by leveraging

specialized hardware to reduce recording overhead (e.g., by using hardware clocks with tighter

synchronization guarantees).

At the software level, we observe a single vendor-driven effort to address the challenges of

R&R with a highly general technique. Intel proposed PinPlay [40], which is an R&R technique

built atop their Pin dynamic instrumentation framework. PinPlay provides highly flexible R&R

options (e.g., subgroup replay) and offers composability with other Pin-based tools (thus, pur-

suing generality). PinPlay’s evaluation was conducted on realistic HPC workloads, including

the Parallel Ocean Program, the MILC quantum chromodynamics code, and a weather predic-

tion application. On these workloads, PinPlay observes between 36× and 147× execution time

overhead during recording, which, despite being high, is indicative of the challenge of recording

sufficient information for high-fidelity replay of scientific applications.

From the academic community, efforts include reformulation of replay as a satisfiability

problem, and specialization to task-parallel runtimes.

Liu et al.’s Light [28] introduces a novel software-level technique leveraging Satisfiability

Modulo Theory (SMT) solvers. Light formally characterizes the minimal trace data needed for

the desired level of replay. Light focuses on logging flow dependence of shared memory accesses,

and then during replay generates a thread schedule that respects the recorded flow dependencies

by formulating it as a satisfiability problem. Light is evaluated on a diverse set of benchmarks

ranging from scientific applications to web server and web crawling applications.

Though all techniques in this section have focused on recording threads’ behavior, in the

case of task-based parallel runtimes such as Cilk Plus, this is not an option since the runtime’s

scheduler may employ variable numbers of threads from run to run in a nondeterministic fashion.

A so-called “Processor-oblivious” R&R is needed in this case. PORRidge [51] is the first such

technique of this kind, which targets Cilk Plus programs where shared objects are protected

by locks. Rather than maintaining per-thread records, PORRidge maintains per-lock records

and constrains the Cilk scheduler to conform to these records’ access orders by augmenting the

scheduler’s DAG-representation of the execution with extra edges that represent the happens-

before relationships observed during recording. PORRidge is evaluated against a diverse set of

benchmarks, including two from the PARSEC suite, and three nondeterministic graph algorithms

from the Problem Based Benchmark Suite. The execution time overhead of the recording phase
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ranges from essentially negligible to 3.39×, with a mean of 1.62× across all benchmarks. The

graph benchmarks saw the highest overheads for both recording and replaying.

In parallel with novel software-level approaches to R&R, researchers have endeavored to ex-

ploit advances in hardware and propose future hardware augmentations. In an effort to reduce

recording overhead while maintaining the level of replay fidelity needed for debugging Hower

et al. introduced Rerun [17], which proposes to use relatively little dedicated memory per core

compared with prior approaches, coupled with a scalar logical clock to establish a partial order

on atomic episodes, i.e. periods during which one thread does not race with any other. Additional

hardware-assisted techniques were proposed throughout the 2010s, most notably QuickRec [41]

which proposes an extension of Intel’s architecture to support efficient record and replay, and

SAMSARA [44] which leverages hardware-assisted virtualization extensions. QuickRec was eval-

uated on the SPLASH-2 benchmarks on up to eight threads, whereas SAMSARA was evaluated

on the PARSEC benchmarks on up to four threads.

More recently, the tool Castor [30] has been developed to provide recording with such low

overhead that it may be left on by default, rather than only used during specific debugging runs.

Castor uses a time stamping procedure that relies on synchronized hardware clocks. In contrast

with other tools, Castor monitors replayed execution and dynamically evaluates whether the

replay sufficiently matches the record. Castor maintains per-thread records of nondeterministic

events which are aggregated to a master record periodically. Castor’s primary contribution is

maximization of log throughput during recording and replay by use of transactional memory

and recording nondeterminism at multiple levels by combining an LLVM pass, library interpo-

sitioning, and thread-level logging. Castor is evaluated against the PARSEC benchmark suite.

Though Castor demonstrates low recording overhead for most PARSEC benchmarks, the Ra-

diosity benchmark incurs overheads up to 25% when running on 10 threads. The authors claim

that this is due to Radiosity’s sensitivity to the log aggregation’s effect on caches and the fact

that Radiosity periodically overwhelmed the aggregator.

3. Record-and-Replay for Distributed Memory

In this section we discuss R&R techniques that target distributed memory models. As the

Message-Passing Interface (MPI) [32] became the de facto standard for distributed-memory HPC

applications, R&R techniques increasingly targeted MPI applications. Therefore, we focus on

these techniques in this section. First, we discuss early approaches to R&R techniques, moving

from data-replay to order-replay in pursuit of scalability. Next, we identify an era of progress in

order-replay due in large part to the integration of logical clock algorithms. Finally, we identify

contemporary techniques which we classify into three main research directions: first, debugging-

oriented techniques with an emphasis on high-fidelity replay; second, techniques oriented towards

reproducibility of communication characteristics and performance analysis; and third, techniques

that straddle the line between R&R and fault-tolerance.

3.1. Early Approaches – from Data-Replay to Order-Replay

The earliest era of R&R techniques for distributed memory applications took the data-replay

approach for three reasons. First, early R&R tools were developed in the debugging community

rather than the HPC community, so logging messages’ content to provide rich debugging infor-

mation at the expense of scalability was seen as an acceptable tradeoff. Second, message-passing
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standards such as MPI were still maturing, which limited the development of order-replay tech-

niques. Third, data-replay does not require that all processes be replayed, allowing users to focus

on buggy processes. Representative data-replay techniques from this era include BUGNET [11]

and Recap [38]. BUGNET logged all message contents and represents one of the first tools

specifically designed to alleviate the burden of nondeterminism when debugging parallel code.

Recap represented a step forward in two ways. First, and most prominently, Recap was one

of the first tools to provide subgroup replay; recognizing that in the debugging context, only

faulty processes need to be replayed. Second, Recap explicitly acknowledges that the rate of

trace generation constrains the technique’s applicability.

As the HPC community began to recognize the need for R&R tools, order-replay soon

emerged as an attractive alternative to data-replay. LeBlanc’s Instant Replay [23] was the earliest

such technique, as discussed in Section 2.1. Instant Replay models all interprocess communication

as accesses to shared objects and assigns version numbers to each such access during the recording

phase. This approach circumvents the need to copy and store message buffers’ contents, and so

is attractive for the debugging scenario where an application may need to run for a long time

before a bug manifests. The empirical evaluation of Instant Replay demonstrated the space

savings that can be realized by an order-replay approach. Specifically, LeBlanc shows that for a

Gaussian Elimination workload on 64 processes, Instant Replay’s trace occupied over 300x less

space than a data-replay trace wherein all messages’ contents are logged.

Despite achieving significant reduction in trace size, Instant Replay presented challenges to

practical implementation, which were identified and addressed by Leu et al. in their proposal

of Execution Replay [25]. Leu observed that Instant Replay’s versioning algorithm requires

sending extra messages, which may interfere with debugging. Execution Replay constrains itself

to send no additional messages. Additionally Leu took steps towards formalizing the notion

of equivalent executions (i.e., What does it mean to say that a replay is “correct”?). Finally,

Leu explicitly addresses replay of both blocking and non-blocking communication–a distinction

absent in prior work. Throughout this initial period of development, we observe the emergence

of the key driving problems that guide research into R&R to this day (i.e., the tradeoff between

memory overhead and execution time overhead). Moreover, the evolution of systems architecture

exacerbated the need to manage the above-mentioned tradeoff. This lead to the burst of research

on R&R techniques throughout the 1990s and early 2000s discussed in the next section.

3.2. Coping with Scale for Debugging

Order-replay techniques were developed in response to the growing need in HPC for scalable

R&R. Through the 1990’s and early 2000’s, two related design goals emerged. First, minimizing

the memory overhead and trace size was recognized as necessary to apply R&R to long-running,

memory-hungry HPC applications. Second, minimizing the execution time overhead was rec-

ognized as necessary, because even small changes in event timings could prevent bugs from

manifesting during the recording phase. Logical clocks [22] (i.e., algorithms for establishing or-

ders on events across multiple processes) became instrumental to tackling both problems. Both

challenges are addressed in the following sections, discussing enhancments associated to logical

clocks and hybridization of replay techniques.
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3.2.1. Enhancing Order-Replay Techniques with Logical Clocks

Netzer’s work on Optimal Replay [36] is archetypical of the research direction for R&R

during the 1990’s. The general idea was to detect potential message races at runtime using a

vector-valued logical clock [12] and log only enough information to cause the races’ outcomes

during replay to match their outcomes during the recorded run. All other non-racing communi-

cation could be safely assumed to repeat without the guidance of the recorded trace. Empirical

evaluation of Optimal Replay on a set of computational kernels (e.g., matrix multiplication)

indicated that only 1-14% of messages required tracing, leading to significant reductions in trac-

ing overhead. Beyond Optimal Replay, Netzer also introduced Incremental Replay [34], which

combined checkpointing with the kind of message-logging common in R&R to allow replayed

executions to “fast-forward” to the region of the execution where a bug actually occured. While

the focus on debugging is clear, this work is indicative of the conceptual overlaps between the

debugging and HPC fault tolerance communities – a trend that has persisted to the present.

Shortly following Netzer’s work on Optimal Replay, MPI was standardized and embraced by

the HPC community as the de facto mechanism for distributed memory scientific applications.

Consequently, R&R techniques for distributed memory applications began to specifically target

MPI. The earliest example of this is Clemencon’s work [9] on the Annai programming envi-

ronment’s parallel debugging tool. Clemencon’s technique builds on the vector-clock-based race

detector of Optimal Replay, adding an additional scalar logical clock per process. This work is

significant not only in its use of logical clocks, but also in that it addresses the nondeterminism

inherent in non-blocking communication, including non-blocking probes. This work was evalu-

ated on communication microbenchmarks, as well as more HPC-oriented benchmarks such as

BiCGSTAB, on up to 64 processes.

Despite the power of vector clocks to determine when events must be recorded, the need to

piggyback vector timestamps on all messages becomes increasingly prohibitive as system size in-

creases. ROLTMP [46] attempts to overcome this scalability barrier by using scalar logical clocks

during recording to determine when events must be explicitly logged, coupled with additional

checks during replay to compensate for the limited ability of scalar clocks to order events across

processes [8].

As MPI saw increasingly widespread adoption in HPC, techniques for R&R emerged that

leverage MPI’s point-to-point communication semantics in order to reduce recording overhead for

applications with limited nondeterminism. Kranzlmuller introduced such a technique in the Non-

deterministic Program Evaluator (NOPE) [20]. This work was novel not only in that it forgoes

logical clocks in favor of a simpler logging mechanism that leverages MPI’s non-overtaking rule,

but also in that NOPE supports replay of alternative executions (i.e., one execution is recorded

but multiple possible executions, including the recorded one, may be replayed). NOPE’s draw-

backs are that it assumes the only sources of receiver-side nondeterminism are wildcard receives,

and that the recorded application is send-deterministic [7].

In addition to leveraging the features of MPI itself, R&R tools were developed in response to

the particular programming idioms HPC developers wrote into their codes. De Kergommeaux et

al. developed MPL∗ [18] which targeted correct replay of MPI applications that use non-blocking

test functions in polling loops. This programming idiom is commonly used to overlap communi-

cation and computation, but one result is that the number of tests becomes nondeterministic.

MPL∗ compactly represents sequences of test calls such that applications that use the number

of test calls (e.g., for control flow) can be correctly replayed. Kranzlmuller later went a step
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beyond, opting to integrate R&R functionality into the MPI library itself [19]. The primary

advantage of such a scheme is convenience for the user in a debugging context since there is no

need to instrument code, link with additional libraries beyond MPI, or manage traces. Later

work by Bouteiller et al. produced Retrospect [5], which integrates R&R directly into an MPI

implementation’s lower-level communication routines and can switch between data-replay and

order-replay strategies based on user needs. Retrospect set a new standard for empirical evalua-

tion of distributed memory R&R techniques as it was evaluated on the NAS Parallel Benchmarks

on up to 1, 024 processes.

3.2.2. Hybrid Replay and Integration of Checkpointing

Due to the growing popularity of order-replay, data-replay approaches were not explored

to the same degree. However, notable exceptions include Gertsel’s On-the-Fly Replay [13] and

several works of Zambonelli [55, 56]. Gerstel’s work introduced a scheme where the entire network

of processes is duplicated, and one-way channels between the processes in the “real” network

propagate the nondeterministic actions of those processes to their partners in the other network.

In a sense, this scheme pursues “replay-while-recording” debugging. In contrast, Zambonelli’s

work builds off of Netzer’s work on Incremental Replay, first providing a solution to avoid

deadlocks then optimizing its message logging algorithm. This work showed that by piggybacking

limited additional information on all messages, its message-logging scheme reduced the number

of messages that needed to be logged by 10%.

Along similar lines, Thoai’s Shortcut Replay [50] proposes replaying from a combination

of globally consistent and inconsistent checkpoints. The value proposition of Shortcut Replay is

being able to skip segments of the execution during replay that are not immediately relevant to a

debugging task. Shortcut Replay leverages the event graph model of MPI programs’ executions

to determine how to safely combine checkpoints to avoid inconsistency during replay.

3.3. Broadened Scope: Adding Reproducibility and Fault Tolerance

Contemporary research in R&R has advanced along two novel directions in addition to de-

bugging: reproducibility and fault-tolerance. First, a class of R&R techniques targeting more

relaxed definitions of reproducibility (e.g., for characterizing the communication behaviors of

applications or studying performance portability) has emerged. These techniques do not pro-

vide the fine-grained, high-fidelity replay of debugging-oriented techniques, but instead prioritize

scaling to larger executions. Second, cross-pollination between the debugging and fault-tolerance

communities has led to a class of fault-tolerance protocols involving message-logging that lever-

age techniques from traditional R&R. First we discuss these new directions, and we conclude

this section by discussing contemporary approaches to debugging-centric record-and-replay.

3.3.1. Reproducibility-Centric Techniques

Although debugging continues to be a major focus of R&R, recent interest from the HPC

community in reproducibility (of e.g., performance, communication behavior, scientific outcomes

of simulations) has motivated R&R techniques that target replay with a more relaxed fidelty

requirement than in the debugging case.

A prominent example of this trend is the Scalatrace tools. The original Scalatrace [37]

tool proposed trace compression techniques that provide nearly constant-sized traces for MPI
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applications with sufficiently regular communication. Regular section descriptors (RSDs) and

their recursive counterparts power-RSDs are used to compactly represent MPI communication

events, which, combined with a suite of MPI-specific encoding techniques, significantly reduce

trace sizes for applications with relatively little nondeterminism.

Scalatrace’s immediate successor, Scala-H-Trace [53] provides probabilistic replay. Rather

than exactly replicating fine-grained MPI events such as individual message receptions, Scala-H-

Trace allows the user to specify a tuning parameter that controls the tradeoff between fidelity of

replay and scalability of recording. By forgoing the lossless tracing approach of its predecessor,

Scala-H-Trace was able to achieve near-constant trace file sizes when recording executions of

the Parallel Ocean Program on up to 2, 048 processes. In contrast, the original Scalatrace was

only able to record the same executions on up to 1, 1024 processes. Additionally, Scala-H-Trace

demonstrated constant trace sizes for the NPB conjugate gradient workload on 2, 048 processes.

An important caveat is that these results were obtained using the lowest replay fidelity setting

of Scala-H-Trace, and the metric used for evaluating correctness of replay is overall execution

time. Despite limited applicability to debugging, techniques providing probabilistic replay can

be invaluable for scientific reproducibility and for ensuring that the communication behavior of

applications has characteristics that agree with programmer intent.

Scala-H-Trace’s successor, Scalatrace II [52], also embraces probabilistic replay. Proposed

as a major redesign of the compression techniques developed in Scalatrace for applications

with more irregular behavior, Scalatrace II is evaluated against a subset of NPB, the Sweep3D

neutron transport kernel, and the Parallel Ocean Program on up to 400 processes. Like Scala-

H-Trace, Scalatrace II performs lossy compression of MPI events and thus its correctness metric

for replay is overall execution time. In all evaluation workloads, Scalatrace II achieves good

agreement between replay time and originally observed execution time–experience an average

execution time error of 5.7%. Like its predecessor, the probabilistic replay Scalatrace II provides

is useful for achieving coarse-grained reproducibility of communication behavior.

Scalatrace was evaluated on stencils of various sizes, a subset of the NPB, and Raptor, a

simulation framework supporting adaptive mesh refinement used in this evaluation to run a

hydrodynamics simulation. These workloads were recorded on up to 512 processes and in most

cases demonstrated nearly constant trace size and memory footprint during recording. However,

the conjugate gradient and Fourier transform benchmarks from NPB yielded trace sizes that

increased with the number of the processors. In the case of the conjugate gradient benchmark, the

role of asynchronous point-to-point communication in the increased trace size is acknowledged.

Most recently, Zhai et al. [57] introduced “Representative Replay”, which targets perfor-

mance prediction. Representative replay permits users to record an execution of a parallel ap-

plication on a limited platform (e.g., a single node of a cluster) and obtain predictions of the

execution time of the same application on the full platform via a controlled replayed execution.

3.3.2. Fault-Tolerance-Centric Techniques

The last aspect of R&R’s applicability is in fault-tolerance. As the exascale era looms, fault-

tolerance occupies an increasingly important role in HPC. R&R techhniques and fault-tolerance

protocols (especially their message-logging aspects) share many concerns, namely concise rep-

resentation of nondeterministic application behaviors. Similarities can also be seen between

debugging-oriented techniques that seek to replay only buggy processes, and fault-tolerance

protocols that combine checkpointing with message-logging; seeking to avoid rolling back ex-
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ecution any farther than necessary. In this section, we discuss fault-tolerance protocols that

incorporate deterministic replay.

Partial message-logging protocols, such as those introduced by Guermouche et al. [16] and

Meneses et al. [31] depend on clustering of processes into process groups that realize similar com-

munication patterns in order to achieive efficient deterministic replay. Ropars et al. introduced

a process clustering technique [47] that leverages the regular communication patterns of MPI

collectives and uses a bisection-based graph partitioning algorithm to compute process clusters

that facilitate partial message-logging protocols. For empirical evaluation, Ropars’ clustering

algorithm is coupled with the above-cited partial message-logging protocols and ran against set

an HPC benchmarks including the NAS Parallel Benchmarks and LAMMPS. The key contribu-

tion of this work is that the process clustering algorithm takes the characteristics of the partial

message-logging scheme it is coupled to into account, resulting in process clusters that are con-

ducive to reducing the overall number of messages logged. Specifically, the technique requires

logging less than 5.3% of all messages for all but one of their workloads.

Due to the daunting task of achieving fault-tolerance at exascale, reseachers seek to lever-

age application characteristics to achieve scalable replay of failed processes. Lifflander et al.

developed an algebraic methodology for their fault-tolerance protocol [27] that can determine

when events in the execution of a distributed-memory application may safely commute (i.e.,

occur in any order without altering the program state after their completion), thus a message-

logging R&R scheme with lower overheads. Beyond this work’s theoretical contributions, the

fault-tolerance protocol was rigourously evaluated against HPC applications across a variety

of scientific domains (e.g., molecular dynamics and hydrodynamics). The evaluation platform

was an IBM BG/P system with 40, 960 nodes, and the workloads were ran on up to 131, 072

processes.

3.3.3. Debugging-Centric Techniques

The debugging-oriented research direction of R&R continues to prioritize reducing the trace

size and memory footprint of the recording phase. Xue et al. proposed Subgroup Reproducible

Replay (SRR) [54] to address not only the problem of trace size, but also provide the user with

flexible replay options (i.e. replaying only those processes deemed relevant to the debugging

task). SRR leverages the fact that most HPC applications are structured so that any one process

does most of its communication with a limited subset of other processes (e.g., communicating

only with its neighbors in a stencil pattern). With this in mind, SRR adopts a hybrid-replay

strategy by recording only message interleavings within groups of processes (order-replay), while

recording the contents of messages between groups (data-replay). While it is acknowledged that

application developers’ expertise may be needed to specify the appropriate process groups, the

grouping can also be obtained by partitioning a weighted graph representing the application’s

communication channels. SRR was evaluated on a diverse benchmark suite containing a subset

of the NAS Parallel Benchmarks, as well as a parallel graph benchmark and a benchmark

specifically designed to stress SRR’s ability to replay nondeterministic probes. The benchmarks

were run on a maximum of 64 processes.

In a distinct approch to hybrid-replay, Gioachin et al. introduced “Processor Extraction” [14]

where multiple R&R passes are used to iteratively progress towards replaying a desired bug.

The first pass uses a lightweight order-replay approach. Subsequent passes use increasingly

heavyweight data-replay approaches but on increasingly small subsets of processes, thereby
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narrowing down the root cause of bugs and limiting the tracing overhead. This technique was

evaluated on up to 1, 024 processes. The evaluation workloads ranged from synthetic benchmarks

to full-fledged scientific applications, specifically ChaNGa and NAMD.

Despite the flexibility of hybrid-replay schemes, pure order-replay remains attractive for

HPC, especially when fine-grained high-fidelty replay is desired for debugging. To this end, Sato

et al. developed Clock-Delta Compression (CDC) [49], a technique for compressing the record of

nondeterministic events. The technique piggybacks scalar logical timestamps on each message

much in the same way that earlier techniques such as ROLTMP do, but instead of explicitly

storing the timestamps, CDC stores a permutation that maps a reference order, which can be

deterministically generated during replay, to the observed order from the recorded run, thereby

realizing a reduction in trace size. Clock-Delta Compression was evaluated against an HPC proxy

application “The Monte Carlo Benchmark” (MCB) [10] on 3, 072 processes, for which CDC was

able to show a reduction in trace size of two orders of magnitude while maintaining execution

time overhead of 13.1-25.5%.

Finally, as MPI continues to evolve, so must the R&R techniques targeting it. MPI’s one-

sided communication routines in particular pose unique challenges to R&R. Quian et al. proposed

two techniques for addressing this challenge–OPR [42] and its successor SReplay [43]. SReplay

proposes a hybrid-replay scheme which permits replay of subgroups of processes. Like MPIWiz,

SReplay does order-replay within process groups for which it employs a specialized vector clock

algorithm. Unlike previous works that have associated vector clocks to individual memory re-

gions, ranges of regions are associated to the same vector clock in SReplay thereby enhancing its

scalability. SReplay was evaluated against standard benchmarks for R&R tools (e.g., the NAS

Parallel Benchmarks), but also against applications exhibiting considerably greater nondeter-

minism (e.g., unbalanced tree search and parallel DeBruijn graph construction) on up to 1, 024

processes.

Conclusion

Record-and-replay techniques were originally developed enabling cyclic debugging in the

presence of nondeterminism, but since then their scope has expanded to include more relaxed

forms of reproducibility, as well as integrating into fault tolerance protocols. This expansion of

scope is driven by the three communities we identify as associated to R&R. In this section we

revisit the guiding questions of each community listed in Section and provide answers.

For researchers whose goal is to develop new R&R techniques, the guiding question is: Where

are the gaps in the technique space? We observe three gaps. First, there are no techniques that

offload recording overhead to accelerators, which are becoming more prevalent on HPC systems.

Second, debugging-oriented techniques have not been evaluated at the scale of full system runs

on petascale platforms. Third, there has been minimal investigation of composability of shared

memory and distributed memory techniques.

For HPC developers, the guiding question is: What are the workloads to which R&R tech-

niques apply? We observe that the workloads R&R techniques are evaluated against have grown

in complexity (as evidenced in Fig. 1 by the increase in full HPC application evaluation work-

loads with time), however the scale at which recording is feasible depends strongly on desired

replay fidelity. For reproducibility studies, recording runs on over 5K processes has become

feasible. For debugging, particularly of long-running applications, 5K processes is still a barrier.
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Finally, for exascale-oriented researchers, the guiding question is: What are the open prob-

lems preventing state-of-the-art R&R from being deployed at exascale? For this community, we

consider first the ways R&R overcame scaling challenges in the past, then propose problems to

consider for the future. Driven by the need to minimize recording overhead, R&R techniques

employed logical clock algorithms, leveraged compression to reduce memory overhead and trace

size, and proposed methods that adapt to application characteristics. For R&R to remain viable

at exascale we observe three potential untapped directions. First, elements of recording and

replaying may be able to be offloaded to GPUs or other accelerators. Second, machine learn-

ing may be needed to more-precisely adapt recording strategies to application characteristics.

Third, logical clock algorithms continue to advance (e.g., logical-physical clocks [21]), exposing

the possibility of upgrading old techniques with new event-ordering strategies.
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able replay with partial-order dependencies for message-logging fault tolerance. In: 2014

IEEE International Conference on Cluster Computing, CLUSTER 2014, Madrid, Spain,

September 22-26, 2014. pp. 19–28 (2014), DOI: 10.1109/CLUSTER.2014.6968739

28. Liu, P., Zhang, X., Tripp, O., Zheng, Y.: Light: Replay via Tightly Bounded Record-

ing. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation. pp. 55–64. PLDI ’15, ACM, New York, NY, USA (2015),

DOI: 10.1145/2737924.2738001

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 27



29. Lusk, E.L., Pieper, S.C., Butler, R.M., Univ., M.T.S.: More scalability, less pain : A simple

programming model and its implementation for extreme computing. SciDAC Rev. 17(1),

30–37 (2010)

30. Mashtizadeh, A.J., Garfinkel, T., Terei, D., Mazieres, D., Rosenblum, M.: Towards

Practical Default-On Multi-Core Record/Replay. In: Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and

Operating Systems. pp. 693–708. ASPLOS ’17, ACM, New York, NY, USA (2017),

DOI: 10.1145/3037697.3037751
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