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A fast and insightful visualization is essential in modeling biological system behaviors and

understanding underlying inter-cellular mechanisms. High fidelity models produce billions of data

points per time step, making in situ visualization techniques extremely desirable as they miti-

gate I/O bottlenecks and provide computational steering capability. In this work, we present a

novel high-performance scheme to couple in situ visualization with the simulation of the vocal fold

inflammation and repair using little to no extra cost in execution time or computing resources.

The visualization component is first optimized with an adaptive sampling scheme to accelerate

the rendering process while maintaining the precision of the displayed visual results. Our soft-

ware employs VirtualGL to perform visualization in situ. The scheme overlaps visualization and

simulation, resulting in the optimal utilization of computing resources. This results in an in situ

system biology simulation suite capable of remote simulation of 17 million biological cells and 1.2

billion chemical data points, remote visualization of the results, and delivery of visualized frames

with aggregated statistics to remote clients in real-time.

Keywords: in situ, visualization, vocal fold, systems biology simulation, agent based modeling,

tissue inflammation and repair, computational steering.

Introduction

Agent-based modeling (ABM) is a powerful and widely used approach to simulate a system

consisting of interacting components or agents. This form of modeling expresses a system at

the microscale, and attempts to explain the emergence of higher order properties of the overall

system [29]. As opposed to the analytical, equation-based approaches, the agent-based approach

offers the ability to add complex behaviors to individual components oragents, making modeling

of composite networks uncomplicated [8, 15]. In ABM, agents are used to represent a wide

spectrum of entities such as animals in ecosystems [13, 18, 24, 25], consumers and markets

in economic models [3, 10, 36–39], and cells and proteins in biological systems [9, 11, 12, 17,

20–23, 31, 32, 34, 41]. These entities interact among themselves and with their environment

(ABM world) in discrete time steps following a set of stochastic and/or deterministic rules. The

simulation area or ABM world is discretized into 3D cubes called patches. In ABM, agents can

be mobile and move from patch to patch. Each patch maintains its states, which affect the action

decision of the residing and neighboring agents.

In this paper, we use the ABM simulation approach to capture tissue injury and repair

at the cellular level. More specifically, we focus on the vocal fold injuries. It is estimated that

voice disorders afflict 1 in 13 adults [7], and nearly 1 in 12 children [1] in the the United

State annually. During phonation, human vocal folds undergo continuous biomechanical stresses.

Thus, voice overuse can lead to vocal fold mucosal tissue injury that triggers complex biological

processes of inflammation and repair. Voice treatments are usually prescribed to patients with

voice problems [16, 27]. However, the healing outcomes of the treatment depend on the patient’s

initial condition and biological profile [20], making the treatment-planning process restraining

and difficult for physicians and therapists. Computational medicine is a promising approach to
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addressing this problem as it incorporates the patient’s biological profile and initial conditions

as parameters in determining an appropriate treatment [19, 26]. Thus, ABM offers a gateway to

capturing inflammation and repair behavior to predict the outcomes of specific treatments for

an individual.

The vocal fold (VF) ABM requires a high-resolution 3D grid to capture cell-cell and cell-

substrate interactions with sufficient details in order to accurately predict the temporal tissue

response to a provocation. Since the size of the world grid reflects the spatial resolution of the

simulation, a high-resolution 3D VF ABM involves generation and analysis of large amounts of

data. Hence, a fast and low I/O load visualization is highly desirable, making in situ visualization

an ideal candidate for understanding the model output.

In this work, we extend our previous work on a fast GPU implementation of VF ABM

simulation to incorporate in situ visualization at no extra cost to the overall simulation. The

proposed scheme combines a data reduction technique to gain optimal visualization performance

with a CPU-GPU scheduling technique to overlap simulation and visualization while hiding the

execution costs of the visualization component. More specifically, our main contributions can be

stated as follows.

• Reducing the amount of data analyzed, while maintaining a high fidelity visual resolution

using an adaptive sampling scheme;

• An in-situ bio-simulation suite capable of processing 17 million biological cells and 1.2

billion chemical data points (a scale biologically representative of human vocal fold at the

cellular level) as well as collecting aggregated statistics, which:

– Completely bypasses I/O; and

– Analyzes and renders results without causing an increase in the overall simulation

time.

The rest of this article is structured as follows: section 1 introduces brief descriptions of

concepts fundamental to this work including agent-based modeling (ABM), the use of ABM

for inflammation and healing modeling, in situ ABM, and information on software and hard-

ware platforms used. Section 2 discusses approaches taken to enhance visualization resolution,

while keeping visualization performance optimized to enable a complete masking of the visual-

ization cost, using our CPU-GPU task scheduling scheme [32, 33]. Performance and resolution

enhancement evaluation is discussed in section 3.

1. Background and Related Work

1.1. Agent-Based Modeling (ABM)

The basic components of ABMs are:

• Agents - Autonomous objects that perform actions and interact with other agents and

the environment;

• Agent Rules - Behaviors of each type of agents; and

• World - The environment which all agents belong to.

Multiple types of agents can be modeled in a single ABM. Each type of agents behaves

according to a set of predefined rules, which can be deterministic or stochastic. For example, a

simulation related to tissue inflammation may have various biological cell types, such as neu-

trophils, macrophages and fibroblasts, as agents. The predefined rules are determined using the

best available knowledge in the literature of each component of the system. The autonomous

N. Seekhao, J. JaJa, L. Mongeau, N. Y.K. Li-Jessen

2017, Vol. 4, No. 3 69



agents are mobile and make decisions based on their states and their environment. Patch size

is uniform across the world, and thus the resolution of the simulation environment is inversely

proportional to the patch size. The temporal dimension of ABMs is discrete and the simulation

progresses in a sequence of synchronous iterations (sometimes referred to as ticks).

1.2. Modeling Vocal Fold Inflammation and Repair with ABM

A Vocal Fold (VF) ABM simulating inflammation and repair was developed and partially

verified against empirical data [20]. The biological cells were implemented as mobile ABM agents.

These agents perform their functionality and make action decisions based on the states of their

surrounding. Briefly, at the time of injury, the damaged mucosal tissue triggers platelet degran-

ulation [21, 22]. Platelets secrete chemicals by modifying the states of their residing patches.

In the inflammatory phase, these chemical gradients stimulate vasodilation and attraction of

inflammatory cells, namely, neutrophils and macrophages. These inflammatory cells then get

activated once they reach the wound site. Activated cells then clean up cell debris and produce

more chemicals to attract cells called fibroblasts, which are responsible for tissue structure main-

tenance. In the healing phase, fibroblasts, activated by tissue damage, synthesize and deposit

extracellular matrix (ECM) proteins such as collagen, elastin, and hyaluronans to form building

blocks in tissue repair [40]. These ECM proteins then form a scaffold for supporting fibroblasts

and other cells migration and wound repair activities [5].

1.3. In-Situ Agent-Based Modeling

In this section, we summarize the most related works. To the best of our knowledge, there has

not been much in situ visualization work involving agent-based modeling (ABM). A quadtree-

based ABM is proposed in [17] to reduce the amount of irrelevant data analyzed in-situ, where

the work in [35] attempts to accomplish the same goal with a bitmap-based approach. There are

tools available on Paraview [14], a popular visualization framework, which can be used for ABMs.

Paraview Catalyst [4, 6] was developed to process simulation output data in-situ according to

the user’s co-processing script. An image-based approach built on top of Paraview Catalyst was

presented in [2] to efficiently manage rendered images created in-situ by Paraview Catalyst. As

much as all these works [2, 4, 6, 17, 35] reduce I/O loads, none completely by-passes I/O or can

be used to achieve anything close to the desired performance for our problem.

1.4. Platforms Used

The model was implemented using C++ as the main language for speed and portability.

The tasks executed on CPUs and GPUs are parallelized using Open Multi-Processing (OpenMP)

application programming interface (API) for shared-memory parallel programming and Compute

Unified Device Architecture (CUDA) API [28], respectively. The visualization component was

implemented using Open Graphics Library (OpenGL), a cross-platform API for 2D and 3D

graphics rendering. The model outputs are visualized in situ, and the visualized frames are

delivered to the remote user via VirtualGL, an open source software which allows any Unix or

Linux remote display software to run OpenGL applications by using the server’s powerful 3D

accelerator to perform rendering calls and send only rendered images to the client [30].

The model was tested and benchmarked on a single compute node with 44-core Intel(R)

Xeon(R) CPU E5-2699 v4 @ 2.20GHz host and two attached accelerators, NVIDIA Tesla M40.
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The host has 128 GB of main memory and the accelerator has 24 GB of memory per device.

The program occupies the compute node fully while running and does not allow for sharing with

other processes as the program requires most of the memory available on the node.

2. A Novel Approach

2.1. Data Reduction Techniques

The processing of large amounts of data is inevitable in high-fidelity simulations. Expressive

visualization enables the human eye to easily extract insightful information about the simu-

lated system. Our model consists of approximately 17 million agents and produces 1.7 billion

bio-marker data points in each iteration. The visualization component includes cell migration,

chemical diffusion, and damage tracking. The most time consuming component is chemical dif-

fusion, which needs to access 154 million points of data during each iteration. To optimize the

visualization of such large amounts of data, we employ sampling techniques and study their

effects on the simulation visual output and corresponding performance enhancements.

2.1.1. Constant Sampling

The first sampling approach is simply constant sampling. The world environment is divided

into tiles of size gridx× gridy× gridz , where the corresponding grid point represents the values

of the tile centered at the point and within the radius of gridx/2, gridy/2 and gridz/2 in the

x-, y-, and z-dimension respectively. This naive approach was used to improve the visualization

speed in our earlier work [33]. At the perspective of the entire simulated volume, the appearances

of sampled simulation were indistinguishable for up to (6× 6× 6)-segment sampling. However,

the output became pixelated when the view is magnified and the camera focuses on a smaller

area. In particular, the wound area was not rendered with reasonable fidelity.

2.1.2. Adaptive Sampling

Adaptive sampling is used to optimize the data access while enhancing the resolution of the

visual output in important areas. This sampling scheme helps keep the execution time low, and

yet the details in the output presented are not compromised.

For models aiming to capture injury undergoing inflammation and repair processes, the

wound site is the most active area. Therefore, the highest importance index was assigned to

the wound site volume. The margin around the wound site, and the rest of the tissue are then

respectively assigned less and least importance. The adaptive sampling pipeline diagram in Fig. 1

illustrates data processing steps used to sample and send data to the visualization pipeline. The

program, by default, divides the whole tissue volume into three sections by first inspecting

the initial wound position and size, followed by adding a margin around the wound based on

user inputs, and then labeling this volume as the most active (region 1). The program lets the

user specify the volume ratio between medium- and low- activity area, and splits the rest of the

volume into regions 2 and 3 accordingly. As our visualization intends to highlight wound activity,

the re-sampling is performed only once, thus the memory footprint is not heavily affected by

the re-sampling process.
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Figure 1. Adaptive sampling pipeline. From the whole set of data (left), the data are read with

resolution conforming to the importance index (middle). The sampled data are then processed

and sent to the visualization pipeline to be rendered (right)

2.2. Simulation and Visualization Scheduling

Given the amounts of data updated at each time step, our model requires a carefully planned

scheduling mechanism for optimal performance. Accelerators such as GPUs need a CPU host,

each of which has a number of cores that can be exploited using parallel programming techniques.

However, whenever accelerated performance is the goal, the focus usually shifts towards GPUs

due to their exceptional data parallel computation capabilities. Often, this tendency results in

idle CPU cores, since their only job is to transfer data and launch GPU tasks, while the GPUs

perform all the computing work. We proposed a host-device computation overlap technique

in our earlier work [32], which results in state-of-the-art performance for multi-scale 2D bio-

simulation ABMs. Since the 3D model is substantially more computationally demanding, we

significantly extend the methods described there to achieve extremely high speed 3D simulation

with in situ visualization.

Model operations are divided into sub-tasks and categorized as coarse or fine [32]. Since

coarse-grain tasks (inflammatory cell and ECM function) are complex but less data-intensive,

they are deemed CPU-suitable, where simple data-intensive fine-grain (chemical diffusion) and

rendering tasks run most effectively on GPUs. The blue boxes in Fig. 2 illustrate the coarse-grain

tasks that are executed in parallel on the CPU using OpenMP, where the green boxes denote

the fine-grain tasks executed on the GPUs. The course-grain tasks execute on all CPU cores

with the exception of NGPU + 1 cores, where NGPU denotes the number of GPUs. The rest of

the NGPU CPU cores are then used to dispatch fine-grain tasks and manage data to and from

the GPUs, while the last core is spared to issue rendering calls to execute visualization on GPU.

In [33], constant sampling was used, which was fast at the cost of lower resolution. Thus, placing

the visualization execution in the GPU idle period was simple. However, in some circumstances,

the user may want to focus on a smaller sections of the world, which means a sampling technique

to enhance the resolution while keeping the visualization execution time smaller than GPU idle
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period is required. The adaptive sampling technique discussed in section 2.1.2 was introduced

to solve this performance-resolution trade-offs problem.

Figure 2. Diagram illustrating the scheduling and coordination of CPU-GPU computation and

visualization overlap. For simplicity, this diagram is depicting a system with a single GPU. For

multi-GPU, diffusion kernels launched are simply divided up and dispatched to multiple GPUs

3. Results

The results discussed below were benchmarked with 32 threads on a single compute node

with 44-core Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz host and two attached accelerators,

NVIDIA Tesla M40. The in situ simulation suite performance reported was measured with the

remote user running the simulation off-site on a typical 50/50 Mbps WIFI connection. The size

of the world grid is 110 x 1390 x 1006.

3.1. Visualization Component Performance

For the ABM simulation, CPU tasks (excluding updates) take about 4.7 seconds while GPU

tasks only take 2.5 seconds for each iteration. Thus, there is an idle period on the GPUs waiting

for the CPU to finish the coarse-grain tasks. Our goal is to make the visualization component

fast enough so that the 2.2-second window gap would allow us to integrate visualization with

computation on the GPUs without increasing the total execution time. As discussed earlier,

our work in [33] used constant sampling, which was fast enough but did not achieve good

enough resolution when zooming in areas of interest such as the wound site. It was observed

that for visualization view of the entire simulated volume (Fig. 3), the appearance of sampled

simulation was indistinguishable from (1 × 1 × 1)- up to (6 × 6 × 6)-segment sampling. Thus,
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for optimal performance, the least important areas in adaptive sampling are set to use the

coarsest resolution of 63 sampling windows. The medium and most important areas are then

sampled with finer 43 and 23 windows, respectively. With 2−4−6-sampling resolution, as shown

in Fig. 4, the resolution of the visualization improved significantly, while the execution time of

the visualization component only increased to 1.9 seconds, which is still below our visualization

time budget, hence no increase in the overall execution time.

Figure 3. A screenshot of in situ visualization of the simulation captured at the client side. The

2D charts plot total concentration for each type of a chemical. The left most 3D volume displays

the distribution of one of the eight chemicals specified by the user. The second and third volumes

show macrophage (brown) and neutrophil (red) distributions respectively. The last volume on

the right displays current damage (pink) and the distribution of fibroblasts (blue)

Figure 4. Screenshots comparison of 63 sampling windows (left) and 2−4−6-sampling resolution

(right) when zoomed in to high-activity area

3.2. Coupled Simulation and Visualization Performance

The performance of the simulation suite is shown in Fig. 5. Without sampling, visualiza-

tion took 23 seconds to complete. With adaptive sampling, visualization of chemical diffusion
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decreased to 1.9 seconds. The visualization execution was performed during the idle period on

one of the GPUs keeping the total execution time unchanged at 6.2 seconds per iteration on

average. This results in the ability to run the simulation from the start of the iteration, remote

computation, remote visualization to the moment the frame gets rendered on the client’s ma-

chine in under 7 seconds/frame. To the best of our knowledge, this is by far the fastest known

complex ABM simulation and visualization of a problem of that physiological scale.

Figure 5. Simulation suite performance. Chart demonstrating overlapped visualization and com-

putation executions on GPUs and CPUs

Conclusion

In this paper, we presented novel techniques to achieve in situ 3D ABM visualization at

almost no cost to the overall simulation. As a result, we can simulate and render the VF in-

flammation and repair in real time. An effective task scheduling and management approach

was used to orchestrate the execution of coarse-grain cellular functions, which are parallelized

on the multi-core CPU, with the execution of fine-grain GPU tasks, including the overlapping

with the in-situ visualization component. This results in optimal concurrent utilization of both

multi-core CPU and GPU, including the fact that the execution time of the GPU visualization

component is completely hidden behind the CPU tasks. We are able to simulate the total of

17 million inflammatory cells and 1.7 billion bio-marker data points, as well as analyze and

render the same number of cells and 154 million bio-marker data points on the server and send

result frames to the remote user in under 7 seconds per iteration. The model is currently being

developed to incorporate more visualization functionality, which includes an integration of ECM

proteins visualization and direct volume rendering into the simulation suite to give users the

ability to extract meaningful information and explore the output data in different ways. The

goal is to keep the overall performance of the simulation the same even with more comprehensive

visualization components.
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