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This paper introduces a fundamentally new computer architecture for supercomputers. The

core module is application compatible with an existing superscalar microprocessor, with minimized

energy use, and is optimized for local sparse matrix operations. Optimized sparse matrix manip-

ulation is discussed by analyzing the High Performance Conjugate Gradient (HPCG) benchmark

specification. This analysis shows how the DRAM memory wall is removed for this benchmark,

and for sparse matrix models of partial differential equations (PDEs) for a wide cross section of

applications. By giving the programmer improved control over the configuration of the super-

computer, the potential for communication problems is minimized. Application compatibility is

achieved while removing the superscalar instruction interpreter and multi-thread controller from

the existing microprocessor’s hardware. These are transformed into compile-time utilities. The

instruction cache is removed through an innovation in VLIW instruction processing. The data

caches are unnecessary and are turned off in order to optimally implement sparse matrix models.
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Introduction

Today’s high performance, superscalar microprocessor includes a superscalar instruction in-

terpreter [12], instuction and data caches, as well as a multi-thread controller [19]. These elements

consume more than 90% of the silicon and more than 90% of the energy, without processing any

of the data. These are the energy monsters in today’s high performance microprocessors. This

paper introduces a core module known as the Simultaneous Multi-Processor (SiMulPro) core

module, which removes all of these problems.

Application Compatibility

Application compatibility requires the existing compiler technology remain basically un-

touched. Removing the hardware overhead of the superscalar instruction interpreter, multi-

thread controller and the instruction cache, requires that the SiMulPro core module be seman-

tically compatible with the existing microprocessor of Figure 1. This means that each assembly

language program needs to generate two applications, the first for the microprocessor, which is

the first target of existing software tools. The second target is the SiMulPro core module, which

does not implement the microprocessor’s Instruction Set Architecture (ISA). This is discussed in

section 1. Semantic compatibility is established for this assembly language program when both

applications respond to the same input stream by generating essentially equal output streams.

Confirming application compatibility needs to be cost effectively managed by breaking this

job into several steps. For High Performance Computers (HPC), particularly supercomputers,

C, C++ and Fortran compilers are the most commonly used. Consider the C compiler. It has

a compiler test set, which is used today to confirm generated assembly code targeting the

microprocessor. The first step of verifying application compatibility uses this C compiler test

set to verify semantic compatibility with the second target (SiMulPro core and core module)

from its generated assembly language programs. The compiler test set is exercised through the C
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compiler to generate its family of assembly test programs. These generated assembly programs

can verify semantic compatibility, and therefore application compatibility, between the existing

microprocessor and the SiMulPro core module.

A second step uses the assembly code programs of one, or more, C function libraries, each

with their verification set, to extend verification of semantic compatibility between these two

targets. At this point, there are two ways to proceed. One approach continues to the C++

and Fortran compilers, their test sets, and so on. The other approach starts from the compiler

output opcode range, and successively extends testing, using the verification and test suite of

the microprocessor. The verification can extend beyond the compiler output opcode range, to

include more, possibly all, of the ISA.

Figure 1. Semantic compatibility confirmed against both compiler technology and the verifica-

tion and test set of the microprocessor implementing an Instruction Set Architecture (ISA)

Consider the verification and test set of the microprocessor of Figures 1 and 2. These ver-

ification and test sets are the primary technical collateral used to insure that going to silicon

with the microprocessor’s design is not a waste of money. This same verification and test set

can be used in several ways to help remove the energy monsters from the microprocessor in an

application compatible manner. What we have just described is the systematic and cost effective

development of the semantic compatibility verification set for the second target. We will return

to Figure 2 later, but first, the second target needs to be outlined.
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Figure 2. Components of the verification and test set and of the generated SiMulPro technology

1. Simultaneous Multi-Processor (SiMulPro) Cores And Core

Module

This simple SiMulPro core supports two simultaneous processes. It implements a simulta-

neous process state calculator, which issues two process states for executing these processes.

Figure 3. A simple SiMulPro core

Each of these simultaneous processes separately owns instructed resources. The separated

ownership means that both processes cannot contend for the same resource, making them im-

mune to stalling from contentions. Each instructed resource includes its own local instruction

processor, which can access its own local instruction memory component. The state of each

process stimulates each owned, local instruction processor. Each instruction processor accesses

its own local instruction memory to generate the local instruction to direct that resource. Each

of the processors includes its simultaneous process and its owned resources.

Figure 4 shows a use of this simplified SiMulPro core. The right hand side is characteristic of

the Multiflow [6], and the EPIC architecture [16], which led to the I-64 [11] and the Itanium [17].

The Mill computer [7] bears some resemblance to the left hand side, but has only two instruction

pointers.

The SiMulPro cores support factoring algorithms into their natural units of up to six, or

more, simultaneous processes sufficient to handle the factoring of at least the algorithms as

outlined in Numerical Recipes [14]. This large virtual VLIW space removes the need for
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Figure 4. The first and second SiMulPro processes each have 8 process states, shown on the left.

A single VLIW instruction pointer requires an equivalent VLIW memory of 64 VLIW words,

shown on the right

instruction caching. Also, all predecessor VLIW approaches require unique compilers, which

negates application compatibility.

Figure 5 shows the FP SiMulPro core including the process state calculator, which generates

multiple process states (or indexes) and their corresponding loop outputs, on every clock cycle.

This is shown in instruction pipe 0. These process states, etc., form an execution wave front,

which successively traverses each instruction pipe. Assume each instructed resource includes 256

local instructions per task. If K is 4, this is a virtual VLIW instruction space of 4 Giga-VLIW

instructions. If K is 6, this is 256 Tera-VLIW instructions.

Pipe 1 includes the Memory Access Processor (MAP), which generates all local addressing

for many standard access patterns, including matrix and vectors, buffering, and FFTs. During

local, linear algebra operations, as in Linpack, all non-floating point cores are turned off. The

system capabilities of instruction pipes 2 and 4 are coupled:

• The FP Rams are organized so that a program can access them for complex numbers as

4 blocks, but are implemented as 8 blocks of 512 words. The read ports are in instruction

pipe 2 and the write ports are in pipe 4. These can be programmed to limit access collisions

for local, sparse matrix operations, to about 2% of the time. Each pair of read ports shares

two queues, so these collisions do not significantly stall the multipliers in performing sparse

matrix operations.
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Figure 5. Example FP SiMulPro core supporting K simultaneous processors

• Data is fed back from instruction pipe 4 to output queues in instruction pipe 2. This feed

mechanism also provides a router-less feed interface to neighboring modules. This is more

energy efficient, because hardware routers are not needed.

• Farther communication uses the STAR (Simultaneous Transmit And Receive) input port

of pipe 4 and output queues of pipe 2. The transfer request channel sends to a memory

controller the parameters for each programmed memory access pattern. The state of the

core modules can be saved with an acceptable overhead. The memory controllers can re-

spond to anticipating memory requests, which preload data into the controller for low

latency transfers when the data is actually needed. This combined with the VLIW in-

struction space makes caches unnecessary. Each channel can transmit and receive a STAR

message on each local clock cycle, assumed to be 1 ns. The application layer of the STAR

message includes a package with a payload of 128 + 5 bits and a context field of 32 bits.

The payload can hold two double precision numbers, sufficient to efficiently download, or

upload, the state of the cores in a Data Processing Chip (DPC). Also, the payload can hold

a double precision number and an index list, which can represent a non-zero entry in a

sparse matrix, or a vector component associated with one, or more, of the non-zero, sparse

matrix entries. This package with, or without the context, is supported by the arithmetic

and feed interfaces as well, so that sparse matrix processing, as well as matrix pivots, are

consistently and efficiently supported.

• Reciprocals, reciprocal square roots and a range clamp circuit, for range limiting of tran-

scendental functions, are each supported with input in pipe 4 and output in pipe 2.

• Integer to float and float to integer are also supported, though they are not shown.

Pipe 3 includes pass forward circuits and two instances of a fused multiplier C-adder. Se-

mantic compatibility often requires a fused multiply-accumulate capability in Floating Point

(FP) [5]. Fused multiplier Comparison (C)-Adders support not only FP, but also posit arith-

metic [9] in at least 3 precisions, 64, dual 32, and quad 16 bit formats. With these capabilities,
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algorithms can go from coarse (16 bit), to finer, and finest arithmetic (64 bit posit), with re-

duced communication overhead, and memory access for early iterations. Neural networks and

deep learning can operate in 16 bit mode, providing 8 posit multiply-accumulates per execution

wave front.

Within each execution wave front, a use vector, of the used resources is generated. Within

the wave front, a use bit drives a power gate generating a gated power used by the resource,

for each resource. In CMOS, the clock may be gated to control power. However, in technologies

such as memristors and molecular gates, other specific mechanisms may provide this capability.

2. Core Modules And Programmable Execution Module (PEM)

Figure 6. The PEM contains 4 core modules, each including 3 types of SiMulPro cores

The PEM is roughly a quad core superscalar microprocessor, without the overhead. Note

that without this overhead Data Processor Chips (DPCs) can scale from about 60 core micropro-

cessors to ten times that many core modules, with about the same power and silicon as today’s

chips. Instances of the same typed cores, such as the FP cores discussed above, can share their

instructed resources. This increases the virtual VLIW space. Assume each FP core supports 6

simultaneous processors and 256 instructions per resource. The VLIW instruction space is then

2(4∗6∗8) = 2192 = 222(19∗10) > 4 ∗ 1057.

There are three types of cores in each PEM, FP, integer and Pattern Manager (Pat Man)

cores. The integer core implements the arithmetic required for application compatibility, and also

keeps track of the indexing associated with every word of the FP memory used for local sparse

matrix oprations. However, the integer core does not generate main memory addressing. Access

requests can be sent by the STAR input port to an external, anticipating memory controller for
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DRAM. This saves at least 15% of the energy used in the core module. Pat Man organizes and

directs the FP and integer activities needed for local sparse matrix operations.

Each core module can operate as a seperate unit. Core module 0 may perform a simulation

of one object. Simultaneously, core module 1 may simulate a second model. Alternatively, each

core module may be configured to model the same object, but at differing geometric locations.

3. Software Development Today And Tomorrow

The compiler is basically unchanged between today and tomorrow. The superscalar inter-

preter hardware, in particular its behavioral model, is transformed into the thread collector

utility as shown in Figures 2 and 6. The thread collector is now a compile-time utility receiving

assembly code, which it translates into microcode. The microcode is then scheduled, as close to

the start of a thread as allowed by the preceding assembler instructions. The thread collector

outputs these sequenced micro code instructions as one, or more, thread source code files.

Figure 7. Software Development Summary

The multi-thread controller, becomes a software utility, which merges and places the threads

into configurations of the PEM. The farther (STAR) network and the router-less neighbor com-

munications are then configured for each DPC in the system. Configuring the system also in-

volves configuring the anticipating memory controllers, interfaced to the DRAM, configuring

communications within the DPC to across the system, and configuring communication with the

data center, in which the supercomputer resides. The verification and test sets for today’s su-

perscalar instruction interpreter become the verification set for the thread collector. Exercising

this verification set and the thread collector, generates the verified thread collector. The behav-
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ioral models of the microprocessor’s data processing resources are injected into SiMulPro core

templates to create the core module. The semantic compatibility verification set is derived, as

discussed above, from the compiler test sets, etc.. Exercising the core model with the semantic

compatibility verification set generates the verified, semantically compatible SiMulPro cores and

core module. Verifying the core module creates the semantically compatible PEM.

3.1. Threads

Today, a thread of execution, is the smallest sequence of program instructions which can

be managed independently by a scheduler in an operating system. In this architecture, threads

are operations of at least one core, in a PEM, expressed as one or more processes. Consider the

following example shown in Figure 8 of a process defined in a thread source code file.

process DotAccum // Declarations

FeedbackInput

ProductIn 1, DotAccum 2;

FeedbackOut

ProductFedback1 ProductIn 1;

DotFedback[1:5] DotAccum[1:5];

C-Adder DotAccum 0;

STAR Out Data DotOut 0;

// Process List

ProcessStates

DPaccum6, // highest priority, least probable process state

DPaccum5, DPaccum4, DPaccum3, DPaccum2, DPaccum1,

DPaccum0; // least priority and most probable state

endProcessStates;

Endprocess;

Figure 8. Short example of thread source code

Figure 9. Resource ownership of four processes to be merged
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After collecting the threads, the intermediate program representation is analyzed from the

thread source code files, and thread merging begins. Consider the following example of processes

shown in Figure 9, all to be placed in the same core after merging. Note that these four processes

share ownership of C-adder0, as they all use this resource. Consider how actions are triggered by

a simultaneous process. Each process owns all of its stimulators, which can be queues associated

with one or more RAM read ports, feedback, feed local or feed farther (STAR) sources. The

process can also be stimulated by the state of internal loop registers. Assume that the four

processes of Figure 9 are to be merged and have the following process states:

Table 1. The states of the processes to be merged

Dot Accum Filter 1 Filter 2 Max Calc Merged

DPaccum6 Facc2 F2acc3 Max5

DPaccum5 Facc1 F2acc2 Max4

DPaccum4 Facc0 F2acc1 Max3

DPaccum3 F2acc0 Max2

DPaccum2 Max1

DPaccum1 Max0

DPaccum0

Given that the highest priority state of each process (shown in the top row) is its least

probable state, merging there processes proceeds by first listing the highest priority states of

each process as shown in the Merged 1 column:

Table 2. Resulting top states of the merged process

Dot Accum Filter 1 Filter 2 Max Calc Merged 1 Merged 2

DPaccum6 Facc2 F2acc3 Max5 DPaccum6 DPaccum6

DPaccum5 Facc1 F2acc2 Max4 Facc2 Facc2

DPaccum4 Facc0 F2acc1 Max3 F2acc3 F2acc3

DPaccum3 F2acc0 Max2 Max5 Max5

DPaccum2 Max1 DPaccum5

DPaccum1 Max0 Facc1

DPaccum0 F2acc2

The merging of these processes continues in this fashion as shown in the Merged 2 column. At

runtime, the instruction set operations are gone, replaced by their microcode sequences, sched-

uled as opportunistically as the assembly program segment permits, and then, possibly, merged

with other simultaneous processes. This runtime situation is new to application developers. They

need to know what processes have been initiated.

Table 3 shows a sketch of a runtime tool to aid programmers. The thread condition register

can show a log of which processes have been initiated in a thread and what test conditions

are being responded to by these processes. When the current thread has completed initiation,
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Table 3. Example of a thread condition register

Thread Condition Register

Collapse Cond Cond Cond Cond

Count 0 1 ... p

it releases its processes to respond to feedback, input and loop conditions. For instance, each

thread may use a 2 bit arithmetic condition code, where ’00’ means == 0, ’01’ means >0, ’10’

means <0, and ’11’ means unavailable. Arithmetic error codes may be represented by another

2 bit code, where ’00’ means normal, ’01’ means infinite generated, ’10’ means Not A Number

(NAN) generated, and ’11’ means unavailable.

subprogram X1(parm list) {
code 1 // cond state length = 0 Cond collapse = 0

if test1 // 0 0

{ code 2) // 1 0

else { code 3 // 2 0

} code 4 // 1 1

}
Figure 10. Example showing condition length and collapse count of the condition code register

Let’s look briefly at what is needed to aid the programmer in this post-branching architec-

ture. We need a semantic content that consistently describes branching across Fortran, C and

C++, at a minimum. Let’s focus on Arithmetic IFs from Fortran, the switch conditional from

C, and Range limiting for transcendental functions. Each of these branching mechnisms can

be described by 2 bit encoding of trinary condition states, making it a feasible and consistent

choice across all three languages. We also need some form of loop constructs that account for

the looping of these languages. Fortunately, C provides us with two primitives into which the

other implementations can be mapped:

do { body1 } while test1;

while test2 do { body2 };

Figure 11. Thread Placement for Block LU Decomposition in one Data Processor Chip

Suppose a DPC is allocated to perform linear algebra operations such as Block LU de-

composition, by placing three kinds of threads, lower block, upper block, and diagonal block

processors [8], as shown in Figure 11. This is a very simplified presentation, placing only three
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distinct threads. However, each core, in each of the PEM, can be configured differently. Complex

parsers, data analytics, numerically intensive, and all other manner of threads, can be placed

to create networks of state machines. These networks can be unique to each DPC. These state

machine networks optimize the big computational, and the big data, processing of tomorrow.

4. Introduction To Sparse Matrix Mathematics And Models

A matrix is a 2-D rectangular array of numbers, either FP or posit numbers. A sparse matrix

A = [ai,j ] is a matrix in which most numbers are zeros. A column vector x =
[
x0 ... xN

]T

is called a stimulus and a vector b =
[
b0 ... bN

]T
is called a response when Ax = b, or

∑
ai,jxj = bi for all i.

Matrix mathematics [8] is an innately useful tool in many applications [14]. In particular,

sparse matrix math [15] has been harnessed to approximate solutions to partial differential

equations [1], [18] specifically, 3-D models of physical systems, which includes fluids, stress and

strain of solids, the dynamics of molecules, plasmas [2], as well as the weather.

Many differential operators, for example the Laplacian, support very stable and efficient

finite difference approximations, such as the 27 stencil model [13] used in HPCG benchmark [10].

Figure 12. On left is the 27 point stencil from the HPCG specification, and on right, the index

enumeration problem for finite difference schemes

The standard approaches to enumerating the finite difference-derived linear equations of the

stencil involve traversing in one direction first. For example, along the i axis, then the j axis,

followed by the k axis. This scatters the geometric locations across a wide section of the stimulus

vector components. HPCG is a typically sized grid of 280 by 320 by 540 nodes. Consider the two

neighboring points L0 and L1 on the right side of Figure 12. The Euclidean distance between

L0 and L1 is 1, but distance between these index locations in the corresponding stimulus vector

components, is 280*320 = 89,600 double precision numbers, or 716,800 bytes apart from each

other. Note that two points separated by one in the j direction are 2,240 bytes apart. If two points

are separated by two numbers in the j direction, this is enough to trigger a cache fault when the

cache page size is 4096 bytes. Every time the sparse matrix row interacts with the stimulus vector

at these two points, components of the stimulus vector are fetched at these greater distances.
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These fetches of the stimulus vector are likely to trigger cache faults. To execute these sparse

linear models efficiently, we need to situate the geometric neighborhoods of the model system

in a single core. By concentrating the relevant geometric information in one core, data caching

is unneeded. The main memory is accessed only once, eliminating the memory wall problem.

5. Local Implementation Of Sparse Matrix Solvers For A

Geometric Neighborhood

The indexing rasterization discussed above for the 3-D model of HPCG, leads to an index

location calculated as

IndexLocation
(

x, y, z
)

= (z ∗N2 + y) ∗N1 + x = IL

implying a localization function, which generates x, y, and z by performing

k = floor (IL/N1)

x = rem (IL/N1)

y = rem (k/N2)

z = floor (k/N2)

Note that HPCG sets N1 = 280 and N2 = 320.

Figure 13. Allocation of FP RAM in Vector stores with the indexing mirrored by Int RAM

Figure 13 shows the FP RAM holding all the non-zero entries for several rows of the matrix

A. Each of these rows includes a lower part, a diagonal part and an upper part. The relevant

entries of each vector are stored locally in vector stores in the FP RAM. Each of the stimulus

vector entries corresponds with (at least) one of the non-zero entries of the A matrix stored
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locally. The response vector components correspond to one of the row indexes of the matrix

rows being stored locally. The vector length is chosen so that the stencil can be stored in

just one vector store, and the boundary stencils fit naturally within this vector store, without

requiring garbage collection. The integer RAM contains the indexes of the corresponding FP

RAM locations. The Pat Man core keeps track of the management tables for the FP and Int

Cores. Note that in some implementations the vector stores for the stimulus and response vectors

may be organized differently.

6. Introduction To The Pat Man Core

Figure 14. Block diagram of the Pat Man core

The Pat Man core shown in Figure 14 is a SiMulPro core, with the following components.

1. The C1-adders of pipe 3 match the index list of a received package to determine which

global object is being referenced, whether the package should be stored in this core module,

and whether the global object uses finite difference, or finite element, indexing. Often, finite

element indexing is organized to reveal geometric proximity.

2. Divmod in and Divmod out of pipes 4 and 2, respectively implement various schemes for

2-D, 3-D (shown above) index location conversion to geometric address. Higher dimensional

indexing may also be supported.

3. Pattern Recognizers (PatRecs) use either the index list (for finite element indexing), or the

derived geometric addresses, to determine which vector store holds the package numeric

data.

The sparse matrix A is downloaded to the relevant DPCs, where these downloaded entries are

processed for storage in their specific core modules. Once completed, the vectors are initialized,

with the core modules storing the relevant components for their model locally. At this point

in each core module, the Pat Man core’s determine which row, or rows, can be processed to

alter the vector components. The altered components are then distributed as needed by one,
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or more, of the communication mechanisms. The received vector updates are used by the Pat

Man cores to update the readiness of the local sparse rows for processing. When a row is ready

for processing, the PatMan sends a message to the FP and Int cores, which is queued until the

cores are ready to begin those operations.

7. Basic Systems Analysis Of Sparse Matrix Performance

While HPCG is not a real program solving one or more partial differential equations, several

things can be done to evaluate what will happen to other application models of similar size. Each

of the FP RAM includes 4K words, which supports 151 vector stores. If 25% of these stores are

allocated to the local components of the vectors, each core module can execute about 110 rows

of the sparse matrix. The 48,384,000 rows of HPCG, and comparable models, fit in 440K core

modules, or about 764 Data Processor Chips (DPCs), which each contain 144 PEM, or 576 core

modules. Assuming 16 DPC chip stacks per optical PCB and 12 PCB’s per optical motherboard,

this is essentially a single rack containing 4 optical motherboards. This rack, once loaded from

the DRAM, never needs to access the DRAM for the matrix values, or vector values, until the

run is over, or the DRAM needs updating due to adaptive grid generation, or refinements of the

finite element cells (etc.).

The remaining overhead is primarily the communication overhead for vector updates. Con-

sider a worst case situation for HPC. Suppose a tokamak reactor containing plasma is simulated

as the interior of a torus as shown in Figure 15. This is a very simplified discussion, which will

not require detailed knowledge of plasma physics nor the specifics of a particular solution algo-

rithm for such equation systems. Simply assume this model saturates a supercomputer covering

a computer floor of roughly 40 meters on a side. Further assume the torus is modeled as a sheet

of core modules, which has its top and bottom edges (ab and cd) joined, then its left and right

edges joined, which is a classic topological construction of the torus. This naive construction has

just condemned the simulation to have a huge energy budget, as well as very poor communica-

tion latency, because the body effect latency now includes the worst case propagation from the

bottom left to the top right cabinets.

Figure 15. Making a torus by identifying sides, and then imposing a 2-D red-black ordering

To bring horizontal traversal under control, rather than enumerate the local geometric neigh-

bors successively, employ a red-black ordering scheme so that the first half of the right to left

cells run from left to right horizontally as red cells, with the second half of these cells as black

cells running from right to left. Now the farthest left and the farthest right neighborhoods can

meet in two neighboring PEM. To remove the vertical traversal problem, further apply the red

black scheme so that the first half of the local neighborhoods traverse from top to botton as red

cells and the second half traverse from the bottom going to the top as black cells. Now, the top
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cells meet the bottom cells within two neighboring PEM, and the worst case traversal path is

just from one cabinet to an adjacent cabinet.

8. Summary

A fundamentally new computer architecture has been introduced. This architecture is ap-

plication compatible with an existing superscalar microprocessor, which can be verified in a

systematic, incremental approach lending itself to effective project management. The super-

scalar instruction interpreter and multi-thread controller are removed from the microprocessor

and transformed into compile-time utilities. Today’s compilers for the microprocessor are pre-

served, essentially unaltered. The instruction cache is unneeded because of the huge, virtual

VLIW space. Sparse matrix modeling of partial differential equations and HPCG, are optimized

by removing the DRAM memory wall. Communication latency and throughput can be con-

trolled by thread placement, as shown by the tokamak and block LU decomposition examples.

New software tools, while maintaining today’s compilers, enable programs to be embodied by

these supercomputers as algorithm state machine networks.

Energy use is minimized. The superscalar instruction interpreter, the caches, and the multi-

thread controller are removed from hardware, giving at least a 10X reduction. Each SiMulPro

core, gates off power to each unused resource on each clock. Local feed communications with

neighboring PEM do not use routers. Sending access requests to external, anticipating memory

controllers for DRAM, saves at least 15% of the energy used for memory address calculation.

Sparse matrix solvers, in systems as small as a rack, are only loaded once from the DRAM.
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