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High performance computing applications are producing increasingly large amounts of data and plac-
ing enormous stress on current capabilities for traditional post-hoc visualization techniques. Because of the
growing compute and I/O imbalance, data reductions, including in situ visualization, are required. These re-
duced data are used for analysis and visualization in a variety of different ways. Many of the visualization and
analysis requirements are known a priori, but when they are not, scientists are dependent on the reduced data
to accurately represent the simulation in post hoc analysis. The contributions of this paper is a description of
the directions we are pursuing to assist a large scale fusion simulation code succeed on the next generation
of supercomputers. These directions include the role of in situ processing for performing data reductions, as
well as the tradeoffs between data size and data integrity within the context of complex operations in a typical
scientific workflow.

Keywords: Scientific Visualization, In Situ Methods, Data Staging Methods, Data Reductions, High Per-
formance Computing.

Introduction

As leading-edge supercomputers get increasingly powerful, scientific simulations running on these
machines are generating ever larger volumes of data. However, the increasing cost of data movement, in
particular moving data to disk, is increasingly limiting the ability to process, analyze, and fully compre-
hend simulation results [1], hampering knowledge extraction. Specifically, while I/O bandwidths regu-
larly increase with each new supercomputer, these increases are well below corresponding increases in
computational ability and data generated. Further, this trend is predicted to persist for the foreseeable
future.

Given this reality, many large-scale simulation codes are attempting to bypass the I/O bottleneck
by using in situ visualization and analysis, i.e., processing simulation data when it is generated. A key
question for in situ analysis is whether there is a priori knowledge of which visualizations and analy-
ses to produce. If this a priori knowledge exists, then in situ processing is often superior to post hoc
processing on leading-edge supercomputers, since it avoids disk usage. However, it is not guaranteed
that the required visualizations and analyses are known a priori. That is, a domain scientist may need to
explore the data in an interactive fashion, or unanticipated analysis may be required. With this research,
we consider the model where in situ processing is used to reduce the data to a form small enough that it
can be saved to disk and later read back for post hoc exploration.

Data reductions under this model could take on many different forms. A few examples of data
reduction types could be compression (lossy or lossless), summary data (vector fields, min/max in a
region, etc.), and reduced precision data formats. Importantly, data reductions should consider the types
of analysis that will be done in the future, as to not introduce errors or artifacts that are not expected.
This means that data reductions should be done within a set of known error bounds that is acceptable to
the researchers doing the post hoc analysis.
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With this work, we consider in situ data reduction in the context of a cutting-edge fusion simulation
code, XGC1. We collaborate closely with XGC1 domain scientists and have been considering which
reductions will be appropriate for this code as their ability to store data further and further decreases.
We consider two distinct approaches, both of which we believe will be necessary for successfully main-
taining meaningful analysis and visualization as XGC1 simulations are run on the next generation of
supercomputers. In both cases, the techniques we consider keep in mind the balance between reduction
and integrity. The contribution of the paper, then, is the description of the directions we pursue for XGC1
to succeed on the next generation of supercomputers, and our results to date in these directions. XGC1
contains two different types of data — particle data and mesh-based field data — and we consider tech-
niques for both. For particle data, we consider sub-selection of particles and how to carry this out in a
meaningful fashion. For mesh-based field data, we consider reduced precision and its effects.

In the remainder of this paper we discuss related work in Section 1, briefly discuss XGC1 in Sec-
tion 2, present two example problems motivating in situ data reductions in Sections 3 & 4, and conclude
with a discussion of areas of continuing and future research.

1. Related Work

Our work builds off of the momentum from the in situ movement, as well as past visualization work
within XGC1. We present the related work for in situ data reduction in three sub-categories: (1) in situ
visualization, (2) XGC1 visualization, and (3) HPC data compression.

1.1. In Situ Visualization

Visualization algorithms are particularly sensitive to I/O bandwidth [3, 4], causing the community
to turn to in situ techniques to alleviate this growing problem. There has been significant work and
successes with the in situ visualization paradigm. For instance, ParaView Catalyst coprocessing [7]
and VisIt LibSim [33] are frameworks that are tightly-coupled to the simulation, i.e, the visualization
runs at scale with the simulation. Visualization and analytics can be performed during the transport
of the simulation data to the I/O layer as well. Three examples of this loosely coupled approach are
Nessie [26], GLEAN [32], and ADIOS [18]. For a more thorough overview of the three loosely-coupled
in situ visualization frameworks, we refer the reader to [23].

1.2. XGC1 Visualization

Early work on production visualization for XGC1 mainly focused on addressing the immediate data
needs of scientists during the course of a simulation run. One example of this was an online dashboard
that was developed for XGC1 simulation monitoring called eSimon [30]. This dashboard was launched
in conjunction with each simulation run, and was responsible for performing common visualization
and analysis tasks in XGC1. First, the dashboard was responsible for creating and updating plots of
approximately 150 different variables every 30 seconds and plotting 65 different planes from the live
simulation. At the conclusion of a run, the dashboard would automatically output movies of each of these
plots of interest for quick review. In addition this dashboard catalogued simulation output, allowing users
to search for and retrieve data of interest, without having to locate and search through simulation output
files. Finally, this dashboard was available to scientists anywhere in the world through their internet
browsers, making the data quickly and readily available.
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More recent work has focused on expanding the visualization capabilities and opportunities for
XGC1 through the utilization of in situ methods. For example, they utilized the features of ADIOS
and EAVL [28], and demonstrated the effectiveness of loosely coupled in situ visualization for large
scale simulation codes using a workflow consisting of ADIOS, data staging, and EAVL. In that work,
they focused on the performance, scalability, and ease of use of visualization plugins that were used on
the output of the XGC1 simulation code. One component of this study looked at optimizing the parallel
rendering pipeline in situ, and gave insight into getting high performing renderings in continuing studies.

Following this effort, work shifted towards researching in transit visualization opportunities for
XGC1 on the wide area network [27]. This research looked at data coupling and near-real-time analysis
and visualization between two geographically separated sites using ADIOS and its ICEE [5] transport
method. This capability is important when considering future use cases for visualization and analysis,
when both simulation and experimental data need to be used and streamed together.

1.3. HPC Data Compression

Data compression strategies for HPC data are typically split into two categories, lossless and lossy
compression. Typical lossless compression techniques include Huffman encoding [10], LZ77 [34],
Gzip [8] and Fpzip [15]. Huffman encoding is an entropy-based compression method that identifies
common occurrences in the data and assigns them unique codes. The LZ77 algorithm uses a sliding
window to search for repeated sequences and then replaces them with a single copy that occurred previ-
ously in the data. Gzip is a general purpose compression technique for compressing any type of data, and
makes use of both Huffman encoding and the LZ77 algorithm. Fpzip is a lossless compression method
that is focused on floating point data. To improve the compression ratio, a variety of lossy compression
methods have been developed over the years, including ISABELA [13] and ZFP [14]. ISABELA applies
a pre-conditioner to the data, and then fits the data with B-spline interpolation to achieve very impressive
compression rates for floating point data. ZFP is a fixed-rate compression scheme that encodes structured
scientific data into 4× 4× 4 blocks using a lifting scheme. Although designed for encoding scientific
codes, ZFP was used for lossy disk storage compression for full-3D seismic waveform tomography, and
reduced the strain-field disk storage by at least an order of magnitude [16].

Work in mesh decimation and simplification is a well researched topic, and Luebke [19] provides an
overview of the various strategies including simplification and view-dependent methods. Also included
are the approaches for each strategy, including sampling, decimation, vertex merging, topology driven,
and error minimization techniques.

2. XGC1 Overview

XGC1 [2] is a 5D gyrokinetic ion-electron particle in cell (PIC) code used to study fusion of mag-
netically confined burning plasmas. XGC1 is used in particular to study turbulence in the outer region
of the plasma called the edge. The simulation proceeds by computing the interactions of a very large
number of particles (ions and electrons), and depositing them onto a finite element mesh at each time
step. The mesh consists of a number of 2D planes positioned uniformly around the toroidal shape of the
tokamak, as shown in Figure 1. At each time step, the particles, which interact within the toroidal space
of the mesh, are statistically deposited as scalar fields onto the mesh. This deposition step provides a
statistical view of simulation, and also helps optimize the simulation runtime.
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Figure 1. Example of a mesh in XGC1. Its planes are equally spaced around the central axis of the
tokamak

3. Data Reduction in Staging

In situ methods allow access to all of a simulations output at each simulation time step. This is a
powerful technique that is enabling new types of analysis and finer spatiotemporal resolutions than ever
before. However, this newfound access to all of the simulation’s data brings with it challenges in how
to efficiently process that much data. With our workflow, we will show that in situ data summaries of
a very large number of particles is possible using a data staging environment, enabling a new type of
analysis for the simulation scientists.

This portion of our study used the particle data from XGC1. Particle data is the largest output dataset
from this simulation. This data can be very large, generally ranging from over 900 GB to nearly 20 TB
per time step. Furthermore, in order to get good bulk particle velocity vector fields as the particles move
around the tokomak, we were required to access the particles at each time step of the simulation. Since
this analysis routine is still being developed however, we did not run the simulation at full scale, instead
we used smaller test scale run on 256 processors with 100,000 particles per core. Our final particle files
were 4 GB. We do however relate our experience from this smaller run to how larger in situ runs will
need to be handled in our conclusion.

3.1. Analysis Workflow

Our workflow consists of three primary elements: (1) the simulation code, (2) a data transfer system
to move data from the simulation to the visualization nodes, and (3) an efficient parallel visualization
library. This study was conducted on the Sith cluster at the Oak Ridge Leadership Computing Facility.
Each of the 39 nodes in Sith contains four 2.3 GHz 8 core AMD Opteron processors and 64 GB of
memory, configured with an 86 TB Lustre file system for scratch space. The components of the workflow
that interact with XGC1 are described below, followed by a description of how the components of the
workflow interact.

3.1.1. ADIOS Data Staging

The Adaptable I/O System (ADIOS) [17] is a componentization of the I/O layer accessible via a
posix-style interface. The ADIOS API abstracts the operation away from implementation, allowing users
to compose their applications independent of the underlying software and hardware. This capability,
along with the functionality of DataSpaces [6], allows this same API to support read and write operations
to and from the memory space of visualization staging nodes.

The loosely coupled paradigm in ADIOS and DataSpaces provides for a clean interface and sepa-
ration from XGC1 that provides ease of use and fault tolerance. Also, this method allows the resource
requirements for the visualization and staging tasks to be tailored for specific purposes.
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For this study, we utilized two nodes on Sith to launch eight staging servers to handle the data con-
nections from both the simulation and visualization nodes. Staging servers are used to store in memory
the data coming from the simulation until the visualization routines call for it. This server configuration
gave the best performance, and is easily scaled as more simulation or visualization nodes are added to
the workflow.

3.1.2. Visualization Library

We designed our visualization routines as flexible, light weight plugins. Our plugins are based on
the Extreme-scale Analysis and Visualization Library (EAVL) [20]. EAVL was developed to address
three primary objectives: update the traditional data model to handle modern simulation codes, inves-
tigate the efficiency of I/O, computation and memory on an updated data and execution model, and
explore visualization algorithms on next-generation architectures. EAVL defines more flexible mesh,
and data structures which more efficiently supports the traditional types of data supported by de-facto
standards like VTK, but also allows for efficient representations of non-traditional data. Examples of
non-traditional data includes graphs, mixed data types (e.g. molecular data, high order field data, unique
mesh topologies (e.g. unstructured adaptive mesh refinement and quad-trees)). EAVL uses a functor
concept in the execution model to allow users to write operations that are applied to data. The functor
concept in EAVL has been abstracted to allow for execution on either the CPU or GPU, and the execution
model manages the movement of data to the particular execution hardware.

For this study, we ran our visualization routines on four nodes, with four processes per node. The
number of visualization nodes can readily be scaled up as the data size increases so as not in slow down
the simulation as each time step is processed.

3.1.3. Workflow Composition

Our visualization and analysis workflow combines three separate elements: the XGC1 simulation,
the staging servers, and the visualization libraries. The workflow is launched as three separate binaries,
with resources for each partitioned as follows: (1) 256 XGC1 processors; (2) 8 Staging servers; and (3)
16 visualization processors. Data flows through the workflow for every XGC1 time step as follows:

• When a new time step is ready from XGC1, it is immediately sent to our staging servers and
subsequently consumed by the visualization routine. The visualization routine does a parallel read
of the restart file, with each process taking 1/nProcs of the data. As consecutive time steps become
available they are consumed.
• Next, the visualization routine statically maps particle ID’s based on the visualization rank.
• Once each rank has the correct particles, a vector is computed between time step n and n+ 1.

These vectors are then averaged onto an unstructured grid. Since the XGC1 mesh is very finely
resolved, we use a coarser version of the mesh in this depositing step.

The resulting vector field is then written to disk for further analysis. It is important to note that this step
is a major data reduction. As shown in Table 1, by performing the vector computation in situ, we are
reducing the amount of data written to disk by between 95 and 476,190 times. This reduction factor is
based on the output particle size of our Test-Scale Run, and the output size of a Large-Scale Run.

3.2. Results

Using the workflow setup described in the previous section, we are able to successfully create
effective bulk plasma particle velocity vector fields for XGC1. We are in the early stages of the analysis
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Table 1. Showing the output particle size in relation to the actual data size being written to disk
at each simulation time step by performing the particle vector analysis in situ

XGC1 Sim Run Size Particle Size Mesh Size Reduction
Test-Scale Run 4 GB 42 MB 95x

Large-Scale Run 20 TB 42 MB 476,190x

of these new fields, so our main highlighted results are that this analysis is now feasible, as well as
the timings that we have gathered from our different analysis runs. A few of the analysis routines that
we plan to explore with the physicists using this data include streamlines, FTLE (Figure 2), Poincaré
plots [29], and more.

From the runs we performed to create the effective bulk plasma particle velocity vector fields, we
measured the amount of time used by the visualization routine, XGC1, and staging. Timings are an
important metric for this simulation, as additional time impacts to the simulation are carefully scrutinized
for production runs. From the timings that we gathered, we found that the impacts of the analysis routine
on the XGC1 simulation are minimal. The only impact to the simulation occurs during the particle write
at each time step. We are currently writing at each time step in order to achieve maximum temporal
resolution with our vectors, but this number can be tuned with future runs as we perform further analysis.

We performed timings of the particle write step of XGC1 using the two currently possible mech-
anisms for accessing the particles for vector analysis: staging and file based. As shown in Table 2, we
found that by staging the particles, we were able to get a 3.2x time reduction with staging versus writing
the particles to disk. This meant that the simulation was impacted less, as it was paused for a shorter
period of time with staging versus the file based method. It is important to note that the time to write the
file to disk will exponentially increase as the run is scaled up to production sizes, while we believe that
staging times will rise at a much lower rate.

Another important data point that we found is that we are able to easily complete the analysis portion
of the pipeline during the time that XGC1 uses to compute a new time step, using only on average 35%

(a). Advection
time 0.10

(b). Advection
time 1.0

(c). Advection
time 5.0

(d). Advection
time 10.0

Figure 2. A slice of an FTLE plot using the effective bulk plasma particle velocity vector field. The
shorter advection times demonstrate smaller scale features (plots a and b), while longer advection times
bring larger scale features to light (plots c and d). The red values correspond to areas where the flow
tends to separate, and blue is where the flow stays together

Preparing for In Situ Processing on Upcoming Leading-edge Supercomputers

54 Supercomputing Frontiers and Innovations



Table 2. Runtime of a single XGC time step using our test-scale run size when either
sending data to staging or writing it to a file. The time variance is due to staging being
much faster than the file based method, impacting the simulation less

XGC1 Simulation
Time step Time (sec)

XGC1 Simulation Particle
Write Time (sec)

Staging File Staging File Reduction
96.6 102.8 1.8 5.8 3.2x

of that time. This is good news as we progress towards using production runs, as we should be able
to scale the visualization nodes in order to keep up with each simulation time step, and even add other
analysis tasks to the workflow to fill in idle analysis periods.

4. Data Reduction Through Reduced Precision

In this example, we motivate and explore the implications of using reduced representations of data
for analysis, and the impacts on preservation of information, and the associated errors.

The errors associated with data reduction techniques, where f is the original data, and f̃ is the
reduced data, are typically defined as follows:

E = | f (x, t)− f̃ (x, t)| (1)

However, scientists will typically require derived quantities or operations, G( f ), on their data, and these
derived quantities are not always known a priori. And so the errors that scientists care about becomes:

E = |G( f (x, t))−G( f̃ (x, t))| (2)

These post-simulation analyses span a large space of possibilities. The simplest cases involve anal-
ysis and visualization of additional simulation variables, additional slice planes, subsets of data, or
isovalues for contouring, as examples. More complicated examples involve transformations of the data,
for example, changes of coordinate systems, different mappings, or analysis in different spaces such
as the Fourier Transform. Derived variables can involve simple mathematical operations such as sum,
difference, product, or division, or more complicated operations such as gradient, curl, divergence, and
norms. More complex operations can include things such as feature detection and tracking, or particle
advection for streamlines, pathlines, Poincaré plots, and Lagrangian Coherent Structures.

While there are a number of ways to reduce the size of scientific data, in this motivating example
we focus on two lossy data reduction methods. The first is the floating point precision of the variable
data, and the second is the spatial resolution of the underlying mesh. We also consider a combination of
these two methods. In order to understand these methods in practice, we have applied these methods to
primary variables from a simulation, derived variable calculations, feature detection, and more complex
analysis operations.

Our work with reduced precision arose from our collaborations with the SIRIUS [11] project. The
SIRIUS project is researching methods for the management and layout of large scientific data across
the memory hierarchy of an HPC system. This layout might include breaking the data up into separate,
dependent pieces. For example, 3 digits of precision in fast memory, and the rest of the precision in
lower levels of the memory hierarchy. If needed, for particular operations, the extra precision can be
combined with the lower precision representation.
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(a). Full mesh. (b). Uniform decima-
tion of the full mesh.

(c). Adaptive decima-
tion of the full mesh,
preserving detail along
the edge of the plasma.

Figure 3. Different types of decimation for the simulation mesh in XGC1

Scientific simulations are typically done using double precision values, which are represented with
64 bits. While this level of precision is required for solving the equations in a simulation, it is typically
not required for basic analysis and visualization operations. For example, when mapping the values of
a variable through a color map, the resolution of the color map is often quite small compared to the
range of the floating point values. The resulting pixels are then a quantized representation of the actual
values. Because of this, very similar, or, in some cases, identical images can be produced from greatly
reduced data. However, as stated previously, one under-explored area is the implications of these reduced
precision data when more complex operations are applied to the data.

The spatial resolutions of the meshes for scientific simulations are determined by the convergence
requirements of the underlying mathematics. This resolution may be appropriate for downstream pro-
cessing of analysis and visualization operations, or it may be overkill. In this paper we explore two
different types of mesh decimation: uniform and adaptive (see Figure 3). Adaptive decimation reduces
the resolution of the mesh in a manner consistent with the underlying science. For example, in Fig-
ure 3(c), which is from an XGC1 fusion simulation, the plasma profiles near the edge region have sharp
gradients, and so the resolution is higher in the edge region of the mesh to capture the fine-scale physics
in this region. On the other hand, using uniform decimation, the mesh is reduced without this underlying
knowledge. To adaptively decimate the mesh, we use a scheme based on quadric decimation [9]. For the
error metric that drives the decimation, we use the proximity of mesh points to the edge region of the
tokamak.

4.1. Results

To explore these ideas, we have been working with the XGC1 fusion simulation code. In this work,
we are focusing on the field variables on the unstructured mesh in XGC1. The primary variables we
are examining include the scalar potential (φ ), and the magnetic field (B). We are interested in examin-
ing derived variables computed using mathematical expressions on these primary variables, as well as
particle tracing through the magnetic field.
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(a). Full data with 48
features

(b). Reduced precision
data with same 48 fea-
tures

(c). Reduced precision
and mesh decimation
with 13 features

Figure 4. Feature detection of reduced representations of a primary variable

Figure 4 shows an example of feature detection on the scalar potential (φ ) in XGC1. In Figure 4(a),
an edge detection algorithm has detected a set of 48 features from the full data set. In Figure 4(b), the
same set of 48 features are identified using a 3 digit precision (5X data reduction) version of φ .
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Figure 5. Relative error for fluid velocity using differing amounts of precision. Full cross section is shown
in (a), and a zoomed in section in shown in (b)
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In Figure 4(c), 3 digits of precision, and a 20X adaptively reduced mesh results in 13 features. The
3 digits of precision (5X reduction) and 20X reduced mesh results in a total data reduction of 100X . The
question of whether or not the reduced data in Figure 4(c) provides an adequate representation of the
underlying physics is something that we are in the process of evaluating with our collaborators in the
XGC1 application team.

As an example of a derived variable, periodically scientists want to examine the perpendicular
velocity of the plasma driven by the electric field (VF ), which is defined as follows:

VF =
∇φ ×B
|B| (3)

The relative error in the derived quantity of varying levels of precision in the primary variables is
shown in Figure 5. Note that in this particular case, the error is clearly dependent on the precision of
the variable φ . The precision of B has a much smaller impact on the errors in the derived variable. This
leads to important insights about the relationship between errors and data reductions on variables, and
can result in more efficient use of very limited data resources in an HPC system.

Relying solely on preserving scientific features in the primary variables can be problematic, as illus-
trated in Figure 6. In this example, by looking only at the reduced precision and decimated meshes for
primary variables, φ and B, the main features appear to be preserved. However, when computing derived
variables, in this case the fluid velocity, VF , the features are not preserved using a uniform decimation
scheme. This highlights the imperative to understand the implications of reduced data representations

Full

Reduced
Precision

and
Adaptive

Decimation

Reduced
Precision

and
Uniform

Decimation

B

φ

∇φ×B
|B|

Figure 6. An example where features are preserved in the primary variables across different types of data
reduction, but are lost when the derived variable is computed
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1 Digit Precision 3 Digit Precision 6 Digit Precision

Full
Section

Detail
Section

Figure 7. Poincaré plots using differing levels of precision in the magnetic field. The original data are
shown in blue, and the reduced data are shown in red

on down stream analysis and visualization operations, and the unanticipated implications of reduced on
data.

The magnetic field, B, is a fundamental driving mechanism in a fusion device. There are a number of
ways to analyze and visualize the magnetic field in a fusion simulation, but one of the most common is by
using particle advection based techniques. In particle advection methods, a set of massless particles are
traced through the mesh by the vector field. As the magnetic field in a tokamak is cyclical, one common
analysis technique is the Poincaré, or puncture plot. Each particle is traced through the vector field, and
each time it intersects a plane perpendicular to the field, the intersection point is marked. Since each
particle travels along a magnetic surface, after the particle has circulated enough, a 2D representation of
the magnetic surface can be seen.

The images in Figure 7 show Poincaré plots of several reduced versions of the magnetic field. The
full data are shown in blue, and the reduced data are shown in red. The first row shows the entire Poincaré
plot, and the second row shows a zoomed in section. As shown in the far left column, a single digit of
precision produces results with significant errors, particularly near the center of the plasma. However,
using only three digits of precision produces results that are very good visual approximations of the full
data.

Conclusions and Future Work

The growing disparity between compute and I/O on HPC systems will require simulation codes
to radically alter how results are output and analyzed, and how scientific information is obtained. This
transformation will require simulations to compute and output analysis and visualizations that are greatly
reduced in size and complexity. These reduced outputs include a wide variety of data, including results
that are more easily analyzed like images, movies, plots and graphs, as well as outputs that require
post-hoc processing to understand, such as data summaries, and mesh-based data. At times, additional
downstream processing is required in order to fully understand output results.

In situ and in transit processing methods will play a critical role for both categories of outputs
mentioned above. For situations where a priori knowledge is available, these outputs should be computed
in situ and output to disk. For situations where a priori knowledge is not available, and post-hoc analysis,
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Figure 8. Current and expected I/O in bytes per 1 Million FLOPS. Data derived from forecasts on past,
current and future HPC systems [12, 25, 31]

visualization, and processing are required, in situ and in transit methods will play a crucial role in
producing integrity preserving reduced data that can be analyzed later. Because all the data are available,
in situ methods play a crucial role in performing data reductions with specified error bounds. These error
bounds should be valid for the simulation variables which are saved, as well as for post-hoc operations
on data that are anticipated on the scientific workflows associated with the simulation.

While the growing disparity between compute and I/O is a reality, there is still significant I/O
capability in current and future HPC systems, and efforts should be taken to ensure that a maximum
amount of information is saved. The challenge is determining the proper set of data to be saved. As
shown above in Figure 8, the expected trend for I/O is one byte per one million floating points operations
on an exascale computer. The challenge then becomes to make sure that each byte written accurately
represents the information produced from the one million floating point operations. In situ methods will
play a critical role in determining the proper byte to be output. In transit methods, where data staging is
used, will also play an important role in providing asynchronous computational capability. Additionally,
because data staging nodes use a separate set of resources, analysis and visualization algorithms that
require communication can operate on reduced data much more efficiently, and with a limited impact on
the simulation.

Because of the breadth of issues involved, solutions to these problems will require collaborative
research between a number of disciplines, including applied mathematics, analysis, visualization and
middleware.

From a visualization perspective, a better understanding is required of the errors bars associated
with operations on data, and how these errors propagate through visualization and analysis workflows.
The data models for visualization tools needs to be expressive enough to represent data in new and
unique forms. For example, native operations on data streams with compressed, or reduced precision
data, efficient operations for variables that are on different meshes.

To address the widening of the memory hierarchy on HPC systems, projects like SIRIUS, in con-
junction with middleware systems like ADIOS, are working to optimize the placement of data. SIRIUS
aims to place the most valuable data in memory locations that are easily accessible, and data that are less
important are pushed down the memory hierarchy, and eventually to long term storage systems, such
as tape. Collaborations with this type of system would involve reduced, approximated representations
in faster memory and the ability to pull up increasingly more accurate representations of the data as
needed. Analysis and visualization processes should work seamlessly in these types of environments to
operate on, and meet the error bars required by scientists. As such, developing the appropriate interfaces
between these different layers is an important research direction.
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We have demonstrated the advantage of these techniques through our work with the particle and
mesh data in the XGC1 fusion code. We have focused on techniques for reducing the data in ways that
preserve information for the scientists. For the particles we have shown how in transit processing can be
used to compute the bulk velocity field, which is a reduced representation of the particle data. For mesh
variables we have shown that care must be taken to reduce data in ways that preserve scientific informa-
tion. We have focused on eddy’s and features in the potential and fluid velocity field, and magnetic field
analysis using streamlines and Poincaré methods.

In Section 3 we have shown how data staging can be used to perform data reductions on particle
data in XGC1. Data staging proves useful in two distinct ways. First, the non-trivial data reduction task
can be performed asynchronously, and not interfere with the simulation. Second, the communication
required to derive the bulk velocity field can be done much more efficiently on a smaller set of nodes.
We have developed these techniques using small runs of XGC1 on a moderately sized cluster. These
small runs allowed us to operate on all of the simulation particles. A full production run of XGC1 on an
HPC system would produce significantly more particles than could processed in a staging environment.
For a full production run a subset of particles would be required that is statistically equivalent to the
entire set of particles. In particular, given a total of N simulation particles, we need a query that will
return a set of M (where M << N) particles uniformly distributed within the spatial extents of the
simulation. Because the particles move at each time step, the representative set of particles must be
periodically recomputed. As a result we will need methods for determining the quality of the particle
subset, and deciding when it is required to recompute. We are currently collaborating with the ADIOS
project to develop such particle queries in order to facilitate production runs on HPC systems. We are
also working to determine the appropriate interface between the visualization tools and the middleware
for these types of operations.

In Section 4 we have shown how reduced representations of XGC1 data can be used in visualiza-
tion, and the unforseen issues that arise on derived quantities. Resolution of these issues will require a
significantly better understanding of data reductions, and the propagation of errors. To formalize these
ideas, we must understand the mathematical implications of these reductions, and be able to provide
error bounds on the use of these reduced data under a variety of operations. These include simple oper-
ations like sum, difference, product and division, as well more complex operations like cross product,
gradient, and curl. With a better understanding of the relationship between errors on input data, and
operations in complex workflows, scientists can accurately specify the requirements for their analyses,
and be confident in the results derived using reduced data.

From an analysis and visualization perspective, we need data models that provide the flexibility
to operate on reduced data in a zero-copy paradigm. Tradeoffs exist between converting reduced data
streams to floating point data and performing on-the-fly conversions as data are used. We are currently
exploring how the data model in VTK-m [21] [22] [24] can be used to address these issues and explore
the tradeoffs of reduced data size and efficiency of computations, particularly as it relates to computa-
tions on accelerators.

We have shown the clear benefits to using an adaptive decimation technique for XGC1. We are
actively exploring techniques for other codes, as well as more generalized methods. When performing
operations with variables on different meshes, collaborative research with applied mathematics is needed
on how best to calculate the derived quantities in a way that minimizes the error. Solutions might be to
interpolate from one mesh to another, or to derive a new mesh that meets the error requirements.

Finally, all of this work takes place in context of a middleware system that manages and coordinate
the movement of data within the HPC system. We are actively collaborating with the ADIOS and SIRIUS
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projects that provide methods to manage data across the the memory hierarchy, as well as the data staging
capabilities in order to provide asynchronous processing. We are also collaborating with these projects
to explore the proper interfaces between analysis and visualization components, and the middleware
system components.
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