Supercomputer Technologies as a Tool for High-resolution Atmospheric Modelling towards the Climatological Timescales

Vladimir S. Platonov, Mikhail I. Varentsov

Abstract


Estimation of the recent and future climate changes is the most important challenge in the modern Earth sciences. Numerical climate models are an essential tool in this field of research. However, modelling results are highly sensitive to the spatial resolution of the model. The most of the climate change studies utilize the global atmospheric models with a grid cell size of tens of kilometres or more. High-resolution mesoscale models are much more detailed, but require significantly more computational resources. Applications of such high-resolution models in climate studies are usually limited by regional simulations and by relatively short timespan. In this paper we consider the experience of the long-term regional climate studies based on the mesoscale modelling. On the examples of urban climate studies and extreme wind assessments, we demonstrate the principle advantage of long-term high-resolution simulations, which were carried out on the modern supercomputers.


Full Text:

PDF

References


Rummukainen M.: State-of-the-art with regional climate models. Wiley Interdiscip. Rev. Chang. 1(1) 82–96 (2016), DOI: 10.1002/wcc.8

Sadovnichy V., Tikhonravov A., Voevodin Vl., Opanasenko V.: ”Lomonosov”: Supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale toward Exascale, Chapman & Hall/CRC Computational Science, CRC Press, Boca Raton, USA, pp. 283–307 (2013)

B¨ohm U. et al.: CLM the climate version of LM: Brief description and long-term applications. COSMO Newsletters 6, 225–235 (2006)

Rockel B., Will A., Hense A.: The regional climate model COSMO-CLM (CCLM). Met. Zeit. 17(4), 347–348, (2008), DOI: 10.1127/0941-2948/2008/0309

Dee D.P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. RMS 137(656), 553–597 (2011), DOI: 10.1002/qj.828

Von Storch H., Langenberg H., Feser F. A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev. 128(10), 3664–3673 (2000), DOI: 10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2

Varentsov M.I., Verezemskaya P.S., Zabolotskih E.V., Repina I.A. Evaluation of the quality of polar low reconstruction using reanalysis and regional climate modelling. Sovrem. Probl. Dist. Zond. Zemli iz Kosmosa 4, 168–191 (2016). (in Russian) DOI: 10.21046/2070-7401-2016-13-8-168-191

Varentsov M., Wouters H., Platonov V., Konstantinov P. Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Moscow, Russia. Atmosphere (Basel) 9(2), 50–73 (2018), DOI: 10.3390/atmos9020050

Wouters H. et al. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geosci. Model Dev. 9(9), 3027–3054 (2016), DOI: 10.5194/gmd-9-3027-2016

Han J.Y., Baik J.J., Lee H. Urban impacts on precipitation. Asia-Pacific J. Atmos. Sci. 50(1), 17–30 (2014), DOI: 10.1007/s13143-014-0016-7

Kislov A.V. et al. Mesoscale atmospheric modeling of extreme velocities over the sea of Okhotsk and Sakhalin. Izvestiya, Atm. and Ocean. Phys., Pleiades Publishing, Ltd 4(54), 322–326 (2018), DOI: 10.1134/S0001433818040242

Cook N.J. Towards better estimation of wind speeds. J. Wind Eng. Ind. Aer. 9, 295–323 (1982), DOI: 10.1016/0167-6105(82)90021-6




Publishing Center of South Ural State University (454080, Lenin prospekt, 76, Chelyabinsk, Russia)